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ABSTRACT

Silent Speech Interface (SSI) has been proposed as a means of recon-

structing audible speech from silent articulatory gestures for covert

voice communication in public and voice assistance for the aphasic.

Prior arts of SSI, either relying on wearable devices or cameras, may

lead to extended contact requirements or privacy leakage risks. The

recent advances in acoustic sensing have brought new opportunities

for sensing gestures, but their original intention is to infer speech

content for classification instead of audible speech reconstruction,

resulting in the loss of some important speech information (e.g.,

speech rate, intonation, and emotion). In this paper, we propose , the

first system that supports accurate audible speech reconstruction

by analyzing the disturbance of tiny articulatory gestures on the

reflected ultrasound signal. The design of introduces a new model

that provides the unique mapping relationship between ultrasound

and speech signals, so that the audible speech can be successfully

reconstructed from the silent speech. However, establishing the

mapping relationship depends on plenty of training data. Instead of

the time-consuming collection of massive amounts of data for train-

ing, we construct an inverse task that constitutes a dual form with

the original task to generate virtual gestures from widely available

audio (e.g., phone calls) for facilitating model training. Furthermore,

we introduce a fine-tuning mechanism using unlabeled data for user

adaptation. We implement using a portable smartphone and evalu-

ate it in various environments. The evaluation results show that

can reconstruct speech with a (Character Error Rate) CER as low

as 7.62%, and decrease the CER from 82.77% to 9.42% on new users

with only 1 hour of ultrasound signals provided, which outperforms

state-of-the-art acoustic-based approaches while preserving rich

speech information.
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1 INTRODUCTION

Voice communication is an important means of enabling people to

communicate with humans or machines. However, voice communi-

cation often faces troubles in different scenarios, such as eavesdrop-

ping concerns in public places and soundless requirements in silent

places. Silent Speech Interface (SSI) is an advanced technology that

enables covert voice communication in public by reconstructing

speech from silent articulatory gestures. It not only opens a covert

way for voice-based interactions, but also can help the people who

acquired voice disorders (e.g., laryngectomy) to regain the ability

of voice communication.

In order to capture the articulatory gestures, classical SSI solu-

tions commonly use various wearable sensors (e.g., EMG, EEG) [4,

19, 30] to sense the movements of vocal organs (e.g., lips, tongue).

Nevertheless, these wearable sensors require body contact or even

device implantation, which hinders the user’s daily activities and

may cause anaphylactic reactions (e.g., skin irritations). To achieve

user transparency, contactless methods have been widely studied

for various SSI applications. A representative category is to lever-

age vision information to extract the features of the articulatory

gestures and generate corresponding speech [6, 16, 46, 47]. How-

ever, cameras introduce privacy concerns and cannot maintain high

performance in low-light conditions. To address the limitations of

vision-based solutions, recent advances have explored how to use

wireless signals (e.g., WiFi [64] and acoustic [20, 59, 70, 72] ) for

articulatory gesture sensing. Nevertheless, current wireless-based

solutions are unsuitable for voice communication, since the orig-

inal intention of infer speech content from reflected signals for

command classification instead of reconstruction of audible speech,

resulting in the loss of some important speech information such as

speech rate, intonation and emotion. Therefore, how to acquire a

manner that can enable silent voice communication using wireless

signals remains an open challenge.

In this paper, we propose SVoice for recovering audible speech

in silence using ultrasound sensing based on commercial mobile

devices (e.g., smartphones). Figure 1 illustrates the practical appli-

cation scenarios of SVoice, including covert voice communication
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(a) Covert voice communication in public.(b) Assisting aphasics to speak with voice.

Figure 1: Motivating examples of SVoice. The (a) shows how

SVoice can help people to communicate covertly with the

voice in silent conditions to prevent eavesdropping. The (b)

shows SVoice as a new interactive interface to restore voice

for people who have acquired voice disorders.

in public and assisting aphasics to speak with voice. SVoice im-

plements a regression model, which maps articulatory gestures

directly to audible speech via ultrasound for restoring rich speech

information.

To realize this high-level idea, we need to address the following

challenges. To begin with, exploiting ultrasound as the vinculum

between articulatory gestures and speech is nontrivial for two rea-

sons. Firstly, it is challenging to extract fine-grained changes from

reflected signals caused by the fast (-80cm/s~80cm/s) and subtle

(<5cm) movements, then reconstruct high-dimensional speech from

low-dimensional ultrasound. Secondly, since speech is the result

of a high degree of overlap and continuous movements [39], the

mapping relationship between articulatory gestures and speech is

notoriously complex. The complex mapping relationship makes it

difficult for DNN models trained on the dataset with a limited num-

ber of sentences to maintain generalization on unseen sentences.

Therefore, it requires plenty of training data containing diverse sen-

tences compared to classification tasks, which drives unaffordable

data collection overhead. Moreover, SVoice should guarantee adapt-

ability to different users. However, since speech reconstruction

is notoriously speaker-dependent due to the differences in vocal

timbre, getting a generic model by training is arduous. Although

fine-tuning offers a viable option, sufficient pairwise training data

is required to transform timbre. More importantly, people who

have acquired voice disorders are inadequate to provide an audible

speech.

To tackle these challenges, we first fully exploit the advantages

of ultrasound and speech, i.e., high sampling rate and rich con-

textual information, respectively. We design an ultrasonic wave-

form to capture the high-resolution magnitude and phase gradients

and apply a two-stream convolution structure and multi-attention

heads to extract the multi-channel context of ultrasound signals

for reconstructing the high-dimensional speech. To reduce the data

collection overhead of establishing the mapping relationship, we

exploit the rich sentence diversity in wild audio (e.g., phone calls),

and construct an inverse task that constitutes a dual form with

the original task inspired by the back-translation. The inverse task

aims to generate virtual articulatory gestures from wild audio based

on conditional GAN (cGAN) and cross-modal similarity measure

network, enabling the widely available data from the target domain

to facilitate model training. Moreover, we propose a fine-tuning

scheme and design a tailored loss function that utilizes unlabeled

ultrasound signals and cross-domain temporal calibration to fine-

tune the DNN model for new users. Finally, we implement SVoice

on a portable smartphone and verify its superior performance com-

pared to existing baselines in various environments.

Contributions: To summarize, our main contributions are as fol-

lows:

• We propose SVoice, an end-to-end Silent Speech Interface

that reconstructs audible speech using ultrasound signals

reflected by articulatory gestures in silence and preserves

rich speech information.

• We design a cross-modal data augmentation mechanism that

can generate virtual articulatory gestures fromwild audio. To

the best of our knowledge, this is the first time to propose a

dual form inwireless sensing tasks, enabling widely available

data from the target domain to facilitate model training,

which can be readily extended to other sensing tasks.

• We present a user adaptation technique that utilizes a small

amount of unlabeled ultrasound data to fine-tune the model

for different users.

• We collect a new dataset and conduct extensive experiments

to demonstrate the performance of our system. The exper-

imental results show the high efficiency and robustness of

SVoice, achieving a CER of 7.62%, and decreasing the CER

from 82.77% to 9.42% on new users with only 1 hour of ul-

trasound signals provided.

2 SPEECH SENSING VIA ULTRASOUND

This section presents the signal design and processing methods, as

well as feasibility analysis, for reconstructing human speech using

ultrasound in SVoice.

2.1 Acoustic Signal Design and Processing

2.1.1 Acoustic Signal Design. Human speech involves many or-

gans. For example, the different vibration patterns of the vocal folds

produce the pitch of the sound which makes up the basic unit of

articulation(i.e. phoneme), and the combined movements of mul-

tiple organs (e.g. lips, tongue, jaw) produce different articulatory

gestures [8]. During the normal speech, there is a certain corre-

spondence between articulatory gestures and phonemes [13]. More

specifically, uttering a phoneme corresponds to the coordinated

movements of multiple articulators, including the production of

airflow in the lungs, the vibration of the vocal cords, the protrusion

of the lips, and the closure and extension and retraction of the

tongue.

In the silent speech, the vibrations of the vocal cords are limited,

but facial muscle movements such as the lips, jaw, and tongue are

preserved. Therefore, it would be possible to recover the speech

signals if we can fully capture and interpret the articulatory gestures.

However, articulatory gestures are very subtle and rapid, typically

lasting 100-700ms [57] and moving less than 5cm [61], making it

challenging to capture the fine-grained gesture motion by using a

single microphone [59]. In order to characterize the fine-grained

articulatory gestures, the signal design of SVoice needs to satisfy the

following two characteristics: i) High sampling rate that can track

the rapid changes of the articulatory gestures; ii) High resolution

to track the subtle changes in the facial muscles.
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Figure 2: A subject is asked to utter “A, B, C, D” while re-

maining vocalized and silent, respectively. (a), (b), (c) are the

speech and ultrasound signals collected during vocalization,

while (d), (e), (f) are collected during silence. The fluctua-

tions in the gradients of phase and amplitude are correlated

with human speech and similar during vocalized and silent

speech.

To satisfy these requirements, we set the transmit signal as a

continuous wave (CW) of 𝐴𝑐𝑜𝑠 (2𝜋 𝑓 𝑡), where 𝐴 is the amplitude

and 𝑓 is the frequency of the signal. By analyzing the amplitude

and phase of the reflected waves, we are able to obtain the changes

in the articulatory gestures. Although modulated CW signals, such

as Frequency Modulated Continuous Wave (FMCW) [9] and Or-

thogonal Frequency Division Multiplexing (OFDM) [43] signals

are widely used in wireless sensing tasks as their resistance to

multipath and frequency-selective fading. However, since these

signals are processed in frames, the loss of inter-frame informa-

tion results in reduced resolution. As for the Doppler shift, since

the hardware artifacts and harmonics, mutual interference exists

between ultrasound signals and audio signals [57], resulting in

Doppler differences between vocalized and silent speech, which is

detrimental to the training model. Therefore, we utilize the phase

and amplitude of the CW signal for fine-grained gesture sensing.

The CW signal is transmitted by commercial acoustic equipment

with a sampling rate of 48 kHz, and each sampling point can capture

one feature point, i.e., the resolution can reach 0.71 cm. In addition,

multiple single-frequency subcarriers are chosen to resist multipath

effects, where the frequency band Δ𝑓 is set to 700 Hz to prevent

interference. Considering that most commercial devices support the

inaudible frequency band of 17-22 kHz, the number of subcarriers𝑁
is set to 8. Then, the final transmit signal is𝑇 (𝑡) =

∑𝑁
𝑖=1𝐴𝑐𝑜𝑠 (2𝜋 𝑓 𝑡),

where 𝑖 is the i-th subcarrier and 𝑓𝑖 represents the frequency of

each subcarrier.
2.1.2 Signal Processing. The ultrasonic waves are separated from

the reflected signals by a high-pass filter, and passed through a band-

pass filter to obtain the signal 𝑅𝑖 (𝑡) = 𝐴′
𝑖𝑐𝑜𝑠 (2𝜋 𝑓𝑖𝑡 + 𝜙𝑖 ), where 𝐴

′
𝑖

is the amplitude of the i-th subcarrier and 𝜙𝑖 is the phase shift of
the i-th subcarrier. Then, the amplitude and phase of the signal are

obtained using a coherent demodulator. Specifically, we multiply

the filtered signal by 𝑐𝑜𝑠 (2𝜋 𝑓 𝑡):

𝑅𝑖 × 𝑐𝑜𝑠 (2𝑖𝑡) = 𝐴𝑖𝑐𝑜𝑠 (2𝜋 𝑓 𝑡 + 𝜙) × 𝑐𝑜𝑠 (2𝜋 𝑓𝑖𝑡)

=
𝐴𝑖
2
𝑐𝑜𝑠 (4𝜋 𝑓 𝑡 + 𝜙) ×

𝐴𝑖
2
𝑐𝑜𝑠 (𝜙).

(1)

Similarly, we multiply the filtered signal by −𝑠𝑖𝑛(2𝜋 𝑓 𝑡):

𝑅𝑖 × 𝑠𝑖𝑛(2𝑖𝑡) = 𝐴𝑖𝑐𝑜𝑠 (2𝜋 𝑓 𝑡 + 𝜙) × −𝑠𝑖𝑛(2𝜋 𝑓𝑖𝑡)

= −
𝐴𝑖
2
𝑠𝑖𝑛(4𝜋 𝑓 𝑡 + 𝜙) ×

𝐴𝑖
2
𝑠𝑖𝑛(𝜙).

(2)

We filter out the additionally introduced high frequency 2𝑓 through

a low-pass filter and then obtain 𝐼 = 𝐴𝑖
2 𝑐𝑜𝑠 (𝜙), 𝑄 = 𝐴𝑖

2 𝑠𝑖𝑛(𝜙). For
reducing the computational cost of training the DNN model, the

𝐼 , 𝑄 signals are smoothed by the mean filter. Finally, in order to

eliminate static interference, we obtain the signal gradients using

the differential approach by subtracting the previous sample point

from the latter one, i.e. 𝑅𝑖 (𝑡)
′ = 𝑅𝑖 (𝑡) − 𝑅𝑖 (𝑡 − 1).

2.2 Feasibility Analysis

In order to capture the correlation between ultrasound and speech,

the user’s speech is vocalized instead of silent when collecting data

for the DNN model training. Thus, the model can use the perfect

alignment of ultrasound and clean speech in the temporal domain

to establish correspondence. To validate the relationship between

the received ultrasound signals and the speech content, we conduct

this proof-of-concept. In this experiment, we ask a subject to say

“A, B, C, D” once each while remaining vocalized and silent, respec-

tively. The microphone on the bottom of the smartphone is fixed 4

cm in front of the subject. Figure 2 shows the fluctuations of the

amplitude and phase gradients in channel 1 (17 kHz) and channel

8 (21.9 kHz) caused by articulatory gestures. We observe a clear

correspondence between ultrasound and speech. In addition, the

fluctuation patterns of phase and amplitude gradients are similar

with the same speech content between vocalized and silent condi-

tions, but distinguishable with different speech content. Based on

this observation, we demonstrate the feasibility of reconstructing

the human voice using ultrasound in silence.

3 SYSTEM OVERVIEW

SVoice is designed to fulfill the following objectives:1) reconstruct

precise and natural speech from ultrasound in silence with afford-

able model training cost; 2) guarantee the adaptability to different

users. Figure 3 depicts the system architecture of SVoice.

In the training stage, we collect the vocalized speech from source

user, which contains synchronously recorded ultrasound and audio.

After signal processing, the ultrasound signals are converted to

multi-channel amplitude and phase gradients and form training

data pairs with audio. SVoice utilizes the precise temporal align-

ment of ultrasound and clean audio to train the SiVoNet network

to establish correspondence. Furthermore, a well-designed virtual

gesture generation method is applied to substantially increase the

number of training samples to facilitate model training. In the in-

ference stage, a small amount of silent speech (without audio) from

the target user is employed to fine-tune the model for optimal pre-

diction outcomes. Note that the collected vocalized speech shown

in Figure 3 is only used during the training stage and the fine-tuned

SiVoNet model can be applied directly for inference. To achieve the
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Figure 3: The system architecture of SVoice mainly consists of acoustic sensing and signal processing modules, SiVoNet for

synthesizing speech from ultrasound, cGAN for generating virtual gestures from speech, and a fine-tuning mechanism using

label-free data.

above goals, SVoice integrates three core components:

SiVoNet (Section 4) We design a tailored speech reconstruction

model, named SiVoNet, which can extract and fuse the phase and

amplitude features of ultrasound and contextual information, and

then quickly generate the corresponding clear and intelligible speech.

Virtual Gesture Generation (Section 5) To establish the complex

mapping between speech and articulatory gestures, we design a

virtual gesture generation strategy based on cGAN to reduce in-

volved data collection costs. Inspired by back translation in machine

translation, our design utilizes easily collected audio (e.g., voice

records or voice chats) to reversely synthesize ultrasound signals to

increase the number of training samples for articulatory gestures

and real speech data pairs, thereby advancing SiVoNet to learn com-

plicated mapping relationships and enhancing the generalization

ability of SiVoNet to unseen sentences.

User Adaptation (Section 6) The intuition is that the determin-

ing factor for the change of ultrasound signal is the speech con-

tent corresponding to the articulatory gesture, and ultrasound con-

tains fewer personal characteristics (e.g., timbre) than audio. Con-

sequently, to accommodate various users, SVoice develop a fine-

tuning scheme to match the unlabeled ultrasound signal from the

target user and the audio with the same speech content from the

source user as training data pairs, avoiding the timbre problem. We

construct a new loss function to reduce timing distortion between

cross-user data pairs, which enables us to fine-tune the SiVoNet

model for new users.

4 SPEECH RECONSTRUCTIONS

SiVoNet is designed to reconstruct audio from ultrasound signals,

as shown in Figure 4, which consists of three main modules: (1)

Feature Embedding Module, which is to extract feature embeddings

from phase and amplitude fluctuations in ultrasound signals; (2)

Speech Parameters Predictor, which is to predict speech parameters

using the contextual information in feature embeddings; (3) Vocoder

Module, which is to rebuild clear and audible audio from speech

parameters.

4.1 Feature Embedding

The phase and amplitude gradients of the ultrasound signal with

time series length 𝑇𝑢 are sent into the feature embedding module,

denoted as 𝑈 𝑝 ∈ R𝑇
𝑢×𝐶𝑢

and 𝑈 𝑎 ∈ R𝑇
𝑢×𝐶𝑢

respectively, where

𝐶𝑢 = 8 is determined by the number of subcarriers. The “blue” part

in Figure 4 illustrates the basic structure of the module. Considering

the different noise and fluctuation patterns of phase and amplitude,

SiVoNet first applies a dual-stream structure with 1D convolution

Resblocks [26] to extract the features of𝑈 𝑝 and𝑈 𝑎 separately along

the time dimension. In each stream, downsampling convolutional

kernels are employed to reduce duplicate information in the tempo-

ral dimension and to align with the temporal resolution of speech

features. Notably, the dual streams are trained independently with-

out sharing weights. Then, SiVoNet concatenates the outputs of

the dual streams along the channel dimension and feeds them into

multi-layer 1D convolution to fuse the two types of features and

transform them into the same feature space.

Note that all the above convolutional layers employ dilated con-

volution to increase the perceptual field of the convolutional kernels

in the time domain and to better aggregate the information in the

temporal dimension.

4.2 Speech Parameters Predictor

The critical challenge of SiVoNet is to reconstruct the audio wave-

form of a high-dimensional stream from the sensing data of a low-

dimensional stream due to information loss. To address this prob-

lem, SiVoNet avoids directly predicting temporal waveforms, and

instead utilizes the speech features of audio, Mel-frequency cepstral

coefficients (MFCC) [49], as intermediate representations. Conse-

quently, the objective of the speech parameters predictor is to map

feature embedding on each time slot to the corresponding MFCC.

Since MFCC retains only the amplitude envelope information of the

audio signal in the time-frequency domain and discards the phase

information, this greatly reduces the difficulty of the task. Neverthe-

less, the sensing feature on a single time slot is still insufficient to

accurately predict MFCC due to the lack of sufficient information.
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We thus design a bi-directional Transformer encoder [12], where

a multi-headed attention mechanism can extract the contextual

information of the feature embedding from multiple dimensions

over a longer time horizon.

Treat the output𝑈 𝑜 = (𝑈 𝑜
1 , . . . ,𝑈

𝑜
𝑇𝑚 ) of the feature embedding

module as the input, where 𝑈 𝑜
𝑖 ∈ R𝑑 , 𝑖 = 1, . . . ,𝑇𝑚 and 𝑑 repre-

sents the hidden layer dimension. For the input time series𝑈 𝑜 , each

attention head computes the scaled dot-product attention over each

subspace in parallel, and outputs a sequence 𝑍 = (𝑍1, . . . , 𝑍𝑇𝑚 )

of the same time length. Thus, the output sequence 𝑍 is linearly

weighted by each element in the input sequence 𝑈 𝑜 . The naive

multi-head attention mechanism ignores the positional relationship

of each element in the input sequence. Although there is no strict

timing restriction on vocalizations, some vocalizations are gener-

ally regulated by grammatical expression rules, some vocalizations

still have a relative sequence relationship (such as fixed phrases).

SiVoNet uses learnable relative position embeddings instead of ab-

solute position embeddings for capturing time-invariant relative

position relationships in𝑈 𝑜 . Each element 𝑍𝑖 ∈ R
𝑑/ℎ, 𝑖 = 1, . . . ,𝑇𝑚

in the output Z of each attention head can be expressed as:

𝑍𝑖 =
𝑇𝑚∑

𝑗

𝛼𝑖, 𝑗 (𝑈
𝑜
𝑗𝑊

𝑉 + 𝑝𝑉𝑖,𝑗 ), (3)

where

𝛼𝑖, 𝑗 = softmax(
(𝑈 𝑜

𝑖 𝑊
𝑄 ) (𝑈 𝑜

𝑗𝑊
𝐾 + 𝑝𝐾𝑖,𝑗 )

T

√
𝑑/ℎ

). (4)

𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 represent the trainable query matrix, key matrix, and

valuematrix, respectively. Thematrices are unique in each attention

head. 𝛼𝑖, 𝑗 represents the weight coefficient which is calculated

by computing𝑊𝑄 and𝑊𝐾 . 𝑝 (𝑖, 𝑗 ) represents the relative position
distance between 𝑈 𝑜

𝑖 and 𝑈 𝑜
𝑗 within a clipping distance 𝑘 , which

is only related to the relative distance of 𝑖 and 𝑗 and the learnable

parameters 𝜔 . 𝑝𝐾
(𝑖, 𝑗 )

and 𝑝𝑉
(𝑖, 𝑗 )

can be written as:

𝑝𝐾𝑖,𝑗 = 𝜔
𝐾
𝑐𝑙𝑖𝑝 ( 𝑗−𝑖,𝑘 ) , (5)

where

clip(𝑥, 𝑘) = max(−𝑘,min(𝑘, 𝑥)). (6)

The predicted MFCC speech parameters𝑀 ∈ R𝑇
𝑚×𝑑𝑚 can be ob-

tained by concatenating the outputs of multiple attention heads and

going through a linear projection layer. 𝑑𝑚 = 39 is the dimension

of MFCC.

4.3 Vocoder

The vocoder module aims to recover the waveform of the speech

in the time domain from the speech parameters, which determines

the quality of the synthesized speech. The vocoder is generally

based on the classical source-filter model of the human vocal mech-

anism that divides the speech generation process into two main

independent modules of excitation source and vocal tract response.

Traditional vocoder based on digital signal processing is fast, but

the synthesized speech quality is poor due to simple speech mod-

eling. The vocoder based on the full neural network synthesizes

speech with high quality but cannot run in real-time. In order to

Figure 4: The structure of SiVoNet to perform exhaustive

extraction of speech information from ultrasound.

balance the speed and quality of speech synthesis, we use LPC-

Net [63] as the vocoder. LPCNet combines the advantages of the

nonlinear fitting capability of neural networks and the simplicity

of LPC filters. Specifically, LPCNet reduces the difficulty of acoustic

modeling by simplifying the modeling of the vocal tract using LPC

filters and fitting the excitation sources using only neural networks.

The generation process of the sampling point 𝑅𝑖 of the speech at 𝑡
is as follows:

𝑅𝑡 =
𝑀∑

𝑘=1

𝛽𝑘𝑠𝑡−𝑘 + 𝑒𝑡 , (7)

where 𝛽𝑘 represents the 𝑘 − 𝑡ℎ LPC parameter of the current frame,

which is calculated by the LPC filter, 𝑠 (𝑡−𝑘 ) represents the sam-

pling point at time 𝑡 − 𝑘 , and 𝑒𝑡 represents the residual at time

𝑡 . LPCNet regards 𝑒𝑡 as an excitation source for neural network

fitting. As shown in Figure 5, LPCNet is divided into three modules,

where the LPC filter module computes 𝛽 from speech parameters.

Notably, we choose MFCC as the input of LPCNet to recover the

time-domain waveform instead of Bark-frequency cepstral coeffi-

cients (BFCC), which are too narrow in the low-frequency part and

lead to inaccurate estimation. The frame rate network comprises

two convolutional and fully connected layers, providing a condi-

tional vector input to the sample rate network. And the sample rate

network is the core module that uses two GRU layers to predict 𝑒𝑡
in an autoregressive manner.

5 VIRTUAL GESTURE GENERATION

In this section, we present our virtual gesture generation scheme

based on cGAN.

5.1 Intuitive Insight

Establishing complex mapping relationships between speech and

ultrasound signals relies on large amounts of pairwise training data,
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Figure 5: The structure of LPCNet Vocoder, which synthesizes

speech from MFCC.

which requires unaffordable data collection overhead. Therefore,

inspired by back-translation frommachine translation [5, 34, 35, 52],

we design a novel virtual gesture generation scheme that generates

ultrasound signals from wild audio.

In machine translation tasks, the key idea of back-translation

is that abundant pseudo-data pairs can be synthesized by training

a back translation model from the target language to the source

language, under the condition that the target corpus is more readily

available [51]. Similarly, based on the fact that it is easy to collect

audio data from daily life (e.g., calling or voice chatting), we can

train an inverse model for generating ultrasound signals from audio,

which encourages additional data pairs to be obtained from the

new audio alone. Our insight is that generating virtual gesture data

from audio can increase the diversity of sentence sets and serve

as a denoising training method to disambiguate forward models,

thereby improving generalization performance.

Note that unlike the previous work [69] in sign language trans-

lation, which achieved “back translation” by changing the order of

the words in the original sentence, we are working on completely

new sentences. We believe that the proposed insight is equally

applicable to other sensing tasks, significantly reducing the data

collection overhead.

5.2 Model Design

The ability of cGAN [42] to transform across domains has been

commonly demonstrated in areas such as image generation [3, 21,

42], speech enhancement [7, 18, 41], and melody synthesis [66]. Our

proposed cGAN framework for cross-domain audio-to-ultrasound

translation is illustrated in Figure 6. The framework consists of

two key components: a generator 𝐺 and a discriminator 𝐷 . Let
(𝑈 ,𝑀) denote a pair of ultrasound vectors and its audio vector.

By conditioning the model on additional audio information𝑀 , 𝐺
is trained to capture the true distribution of the corresponding

ultrasound data 𝑈 𝑟 , while 𝐷 tries to distinguish the true data 𝑈 𝑟

from the pseudo data𝑈𝑔 synthesized by 𝐺 . The objective function
𝑉 (𝐺, 𝐷) is as follows:

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = L𝐷 (𝐺, 𝐷) + L𝐺 (𝐺,𝐷). (8)

Using the trained𝐺 , we can generate dozens of corresponding ultra-
sound data for an unseen audio to enable virtual gesture generation.

5.2.1 Similarity Assessment Discriminator. A key challenge for dis-

criminators is how to design for effective identification of real and

generated data. The traditional approach is to project the prediction

into 1 dimension, which represents the “real or fake” probability of

the input data, and then calculate the loss accordingly. However,

due to the 1-dimensional output containing limited information, it

is hard to force the discriminator to learn the correlation between

the two modalities, audio and ultrasound, to reasonably distinguish

“real or fake”. Hence, inspired by the work on speech enhancement

involving multiple modalities similarly [57, 71], we use the Siamese

network [33] and Triplet loss [24] to train the cross-domain dis-

crimination model and evaluate the similarity between the two

modalities.

Defining (𝑈 𝑟 , 𝑀) and (𝑈𝑔, 𝑀) as two types of input pairs (real

pair and fake pair) for 𝐷 , where 𝑈 is a vector of ultrasound phase

and amplitude gradients in series and 𝑀 represents the MFCC

parameters. We first design two sub-networks: the ultrasound sub-

network and the audio sub-network, which extract embedded simi-

larity features for 𝑈 and𝑀 respectively. These two sub-networks

have a similar network structure, with a Resblock and a convolu-

tional layer to abstract features, a BLSTM layer to obtain temporal

context information, followed by an FC layer to project the final

similarity feature vector. Note that in order to fairly estimate the

similarity vectors of two different inputs of the same modality, the

ultrasound sub-network deploys a Siamese network structure that

shares architecture and weights for the inputs𝑈 𝑟 and𝑈𝑔 .

To enable 𝐷 to better "understand" the correlation between ul-

trasound and audio, facilitating correct identification, we use the

Triplet loss function to update the model parameters. Specifically,

for𝐷 , the input to loss is a triple (𝑀,𝑈 𝑟 ,𝑈𝑔), where𝑀 is considered

as the anchor, 𝑈 𝑟 as the positive sample, and 𝑈𝑔 as the negative

sample. Aiming to minimize the distance of real pairs (𝑀,𝑈 𝑟 ) and

maximize the distance of false pairs (𝑀,𝑈𝑔) in the feature space,

the loss function for 𝐷 is designed as follows:

L𝑫 (𝐺,𝐷) = E𝑀,𝑈 𝑟 ,𝑈𝑔∼𝑝data (𝑀,𝑈 𝑟 ,𝑈𝑔 )

[‖ 𝑓𝑎 (𝑀) − 𝑓𝑢 (𝑈
𝑟 )‖22 − ‖ 𝑓𝑎 (𝑀) − 𝑓𝑢 (𝑈

𝑔)‖22 + 𝛼]+,
(9)

where 𝑓𝑎 and 𝑓𝑢 represent the audio and ultrasound sub-networks

respectively, and 𝛼 is a margin distance that is enforced between

real and fake pairs. Based on the insight that the closer the distance

between two points in the same feature space, the more similar they

are implied to be (i.e., the higher the correlation), 𝐷 is trained to

learn how to capture the correlation between audio and ultrasound

to distinguish between real and fake ultrasound.

5.2.2 Audio-to-Ultrasound Generator. For the generator𝐺 , our goal
is to learn the mapping from the auxiliary audio to the underlying

ultrasound variation patterns. The input of 𝐺 is the MFCC speech

features 𝑀 ∈ R𝑇
𝑚×𝑑𝑚 calculated from the real audio and a ran-

dom noise vector 𝑁 ∈ R𝑇
𝑚×𝑑𝑚 . Note that we set the dimensions

of 𝑀 and 𝑁 to be the same. Two modules, feature extractor and

ultrasound predictor, are developed in G based on our intuition that

pairwise tasks can use a similar model structure. In order to extract

features, we likewise apply a Resblock-based dual-stream structure

on the input sequence and then feed the concatenated output into

a 6-layer 1D dilated convolution. In particular, contrary to SiVoNet

(Section 4), we utilize transposed convolution [15] in the Resblock
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Figure 6: The architecture of cGAN-based virtual gesture generation network, which generates ultrasound from audios.

Figure 7: The workflow of target user adaptation design,

which utilizes audio of the source user data to achieve label-

free model fine-tuning.

structure rather than general convolution to upsample audio pa-

rameters (MFCC) to reconstruct ultrasound parameters (amplitude

and phase) with much smaller temporal resolution. Finally, we use

a Bi-directional LSTM layer [23], sandwiched between two linear

projections, to jointly predict the differential change in amplitude

and phase of the ultrasound, i.e. the first 8 dimensions of the output

represent the phase and the remaining 8 dimensions correspond to

the amplitude.

𝐺 also uses the Triplet loss but adversarially swaps the positions

of the positive and negative samples, i.e. the input is (𝑀,𝑈𝑔,𝑈 𝑟 ).

Since the generator𝐺 is tasked to not only fool the discriminator 𝐷 ,
but also to get as close to the ground truth as possible, we mix the

triplet loss with a traditional loss (L1 distance) to encourage align-

ment, which has been considered beneficial in previous studies [29].

The final loss function for 𝐺 is shown in Equation 8:

L𝐺 (𝐺, 𝐷) = E𝑀,𝑈𝑔,𝑈 𝑟∼𝑝data (𝑀,𝑈𝑔,𝑈 𝑟 ),𝑁∼𝑝𝑁

[𝜇 (‖ 𝑓𝑎 (𝑀) − 𝑓𝑢 (𝐺 (𝑀, 𝑁 ))‖22 − ‖ 𝑓𝑎 (𝑀) − 𝑓𝑢 (𝑈
𝑟 )‖22 + 𝛼)+

+ 𝜆‖𝐺 (𝑀, 𝑁 ) −𝑈 𝑟 ‖1],

(10)

where 𝜇 and 𝜆 represent the coefficients of the Triplet loss term

and the L1 loss term respectively, and 𝐺 : (𝑀, 𝑁 ) → 𝑈𝑔 .

6 USER ADAPTATION

In this section, we illustrate our approach to improving the user

adaptability of SVoice. Since the differences in the timbre of each

individual, a substantial quantity of training data from new users

are necessary for fine-tuning the model, which is unsuitable for

deployment in the practical world. Moreover, aphasics are incapable

of providing audible speech as the label. To address this issue, our

critical insight is that audios are rich in individual characteristic

information (e.g., timbre), whereas ultrasound signals reflected by

articulatory gestures focus on the semantic information inherent

in speech, which is relatively constant between individuals. This

encourages us to fine-tune the model by collecting unlabeled ultra-

sound signals from target users and enabling labeled data from the

existing source training dataset. Figure 7 illustrates the workflow.

Denote the source dataset as D𝑠 = {(𝑈 𝑠
1 , 𝐴

𝑠
1), . . . , (𝑈

𝑠
𝑛 , 𝐴

𝑠
𝑛)},

where 𝑈 𝑠 represents the ultrasound signal and 𝐴𝑠 represents the
audio signal aligned with the 𝑈 𝑠 timing. For 𝑈 𝑡 collected from

target users, we cannot use traditional fine-tuning schemes due to

the lack of time-aligned audio label𝐴𝑡 . Thus, we turn our attention

to D𝑠 . From D𝑠 , we select 𝐴𝑠 that has the same speech content

with 𝐴𝑡 as the label of 𝑈 𝑡 , since the timbre of the reconstructed

audio by SVoice relies on labels rather than ultrasound signals.

However, although the content of the audio is the same, 𝐴𝑠 and
𝐴𝑡 are temporally aligned in time series due to distortions caused

by differences in individual speaking rates. The neural network

predicts 𝐴𝑡 from 𝑈 𝑡 , and the loss existing between 𝐴𝑡 and 𝐴𝑠 can
be expressed as:

L = ‖𝐴𝑠 −𝐴𝑡 ‖2

= ‖𝐴𝑡 −𝐴𝑡 ‖2 + Ltime ,
(11)

where Ltime is the loss of timing mismatch between 𝐴𝑠 and 𝐴𝑡 .
The existence of Ltime makes the model unable to establish the

correct mapping relationship between𝑈 𝑡 and 𝐴𝑡 .
To address this problem,we useDynamic TimeWarping (DTW) [49]

to construct a loss function to eliminate the effects of the timing

distortion loss of𝐴𝑠 and𝑈 𝑡 . Specifically, we use a pre-trained model

to predict 𝐴𝑡 with poor quality from𝑈 𝑡 , and use DTW to align 𝐴𝑠

to 𝐴𝑡 in time dimension to obtain 𝐴𝑠 . 𝐴𝑠 and 𝐴𝑡 are aligned in the

time dimension, eliminating Ltime . Therefore, we have the new

loss function:

L = ‖𝐴𝑠 −𝐴𝑡 ‖2 . (12)

However, DTW is used to achieve 𝐴𝑠 → 𝐴𝑠 , but due to the non-

differentiability of DTW, the loss caused by DTW itself in the pro-

cess of 𝐴𝑠 → 𝐴𝑠 will not participate in the back-propagation of the

model. Consequently, obtaining 𝐴𝑠 still loses some accuracy due

to timing matching, and we denote this loss as 𝛿𝐴 . To reduce the

accuracy drop when using DTW for 𝐴𝑠 , we propose a matching
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Figure 8: Experimental setup. The target sits in a normal

posture and holds the smartphone naturally to record ultra-

sound signals during the target’s speech with/without audio.

scheme instead of randomly selecting𝐴𝑠 fromD𝑠 . Since the size of

𝛿𝐴 depends on the degree of distortion of𝐴𝑠 and𝐴𝑡 , and𝐴𝑡 cannot
be obtained directly, we instead use the degree of timing matching

loss 𝛿𝑈 between 𝑈 𝑠 and 𝑈 𝑡 as a measure of the size of 𝛿𝐴 . Note
that we can use 𝛿𝑈 to indirectly represent 𝛿𝐴 due to the complete

time synchronization between the ultrasound signal and the audio

signal during a recording. To better capture the difference between

𝑈 𝑠 and𝑈 𝑡 , we utilize Canonical Correlation Analysis (CCA) [25]

to find more correlated components in the magnitude and phase

of multiple subcarriers in 𝑈 𝑠 and 𝑈 𝑡 . Then, use DTW to obtain

the corresponding timing matching loss 𝛿𝑈 . Finally, we find the 𝐴𝑠

corresponding to the minimum 𝛿𝑈 in the source dataset D𝑠 as the

label of𝑈 𝑡 , thereby minimizing the 𝛿𝐴 loss.

7 IMPLEMENTATION

Prototype: We implement a prototype of for comprehensive

evaluation. Figure 8 shows the experimental setup. The target

is asked to sit in a normal posture, naturally holding the smart-

phone to record the ultrasound signals during the target’s speech

with/without audio. Without loss of generality, we exploit a Sam-

sung Galaxy S8 to validate the performance of on the commercial

smartphone platform. We configure and control the smartphone

using the LibAS [62] development toolkit run on a PC (i.e., MacBook

Pro laptop) to synchronously collect both ultrasound and audio

from the bottom microphone.

Data Collection: In our experiments, we select 250 unique sen-

tences covering all Chinese phonemes from the open-source dataset

AISHELL-3 [53] as our speech corpus. We recruit 10 volunteers,

including 5 males and 5 females, ranging in age from 19 to 25 years

old, and all volunteers are native speakers of mandarin. We explic-

itly inform volunteers about the purpose of the experiments. To

increase the diversity of the environment, all volunteers repeat each

sentence at least 5 times in 3 quiet environments (i.e. laboratory,

meeting room, office). Therefore, we obtain a total of 37500 data

pairs with 4s length of each pair (takes about 41.7 hours). We adopt

corpus to randomly split the collected dataset into the training and

test sets that include 200 and 50 sentences, respectively.

Virtual Gesture Generation: To generate additional virtual artic-

ulatory gestures, we train the cGAN-based model using the training

set. Furthermore, each volunteer provides an additional 500 audios

that are not included in our corpus. cGAN is controlled to repeat-

edly generate gestures from each audio 15 times, after which the

Figure 9: The T-F spectrogram of ground truth and the recon-

structed speech. The speech contents are “wo3 kan4 dao4 yi4

ben3 shu1 he2 yi4 duo3 hua1.” (I saw a book and a flower.).

generated dataset is combined with the original training set to form

a new training set. Note that the sentences used in the generated

data do not appear in the training or test set. As a result, the fi-

nal training set has 105000 data pairs with 700 unique sentences,

whereas the final test set has 7500 data pairs with 50 unique sen-

tences. Finally, is trained and evaluated using the final training/test

set.

Metrics: We characterize performance and conduct a comprehen-

sive comparison with the state of arts from two perspectives: speech

recognition accuracy and speech reconstruction quality. These can

be quantified by the following four metrics:

Character Error Rate (CER): The minimum difference in charac-

ters between system output and baseline, which can be calculated

by [67]:

𝐶𝐸𝑅 =
𝐼𝑐 + 𝑆𝑐 + 𝐷𝑐

𝑁𝑐
, (13)

where 𝑁𝑐 represents the total number of reference characters. 𝐼𝑐 , 𝑆𝑐 ,
and 𝐷𝑐 respectively represent the minimum number of characters

inserted, replaced, and deleted to convert the output of Automatic

Speech Recognition (ASR) to a reference. Using the Microsoft Azure

Speech-to-Text API [2], we calculate CER by comparing the recon-

structed speech to the reference speech recorded with the same

microphone. A lower CER indicates a higher quality of the recon-

structed speech.

STOI [58]: Short-time objective intelligibility is a state-of-the-art

speech intelligibility estimator that uses a linear correlation of tem-

poral envelopes between reconstructed speech and ground truth,

with values ranging from 0 (poor) to 1 (excellent).

ESTOI [31]: Extended short-time objective intelligibility ranges from

0 (poor) to 1 (excellent).

PESQ [50]: Perceptual evaluation of speech quality is an objective

and fully referenced approach for assessing speech naturalness that

creates models with mean opinion scores ranging from 1 (poor) to

5 (excellent).

629



SVoice: Enabling Voice Communication in Silence via Acoustic Sensing on Commodity Devices SenSys’22, Nov 6-9, 2022, Boston, USA

(a) The T-F spectrogram of speech with special intonation on the words “lao3
ban3” (left) and “mei2 ren2” (right), respectively.

(b) The T-F spectrogram of speech with special intonation on the words “hen3
hao3” (left) and “yi2 qie4” (right), respectively.

Figure 10: Spectrograms of speech with special intonation

on various parts of the content. The speech contents in (a)

and (b) are “mei2 ren2 shi4 lao3 ban3.”(No one is the boss.),

“yi2 qie4 dou1 hen3 hao3.”(Everything is fine.), respectively.

8 EVALUATION

In this section, we conduct comprehensive experiments in the real

world to evaluate the effectiveness and robustness of .

8.1 Overall Performance

This section focuses on verifying the effectiveness of the proposed

series of techniques: i) speech reconstruction, ii) virtual gesture

generation, and iii) adaptability to different users.

8.1.1 Speech reconstruction ability. To give an intuitive awareness

of the speech reconstruction performance of , we show the T-F

spectrograms of the speech synthesized by and the ground truth

in Figure 9. The similarity in the overall shape of the T-F spectrum

indicates that the information for reconstructing the human voice

is well preserved in the articulatory gestures. The reason is that

SVoice capture multi-channel contextual information using the

transformer to reconstruct the high-dimensional spectrum. We

annotate the position of the word at the corresponding formant and

show the details of the low-frequency part. Formants are unique

frequency components of the human voice. The results show that

can reconstruct the low-frequency part and distinguishable formant,

which indicates that our vocoder can recover natural human voice

from speech parameters. In addition, we find that SVoice can even

capture the airflow that usually appears in some plosives, which

Table 1: Objective speech quality, intelligibility, and CER for

Vision-based method and SVoice.

Method STOI ESTOI PESQ CER

Lip2Wav(Vision-based) 0.73 0.54 1.77 14.08%

SoundLip [70] / / / 12.56%

SVoice(ours) 0.77 0.72 1.53 5.72%

(a) CER for 10 subjects when vocal-
ized/silent.

(b) MOS for 10 subjects when vocal-
ized/silent.

Figure 11: The CER and MOS of each subject during vocaliza-

tion/silence.

Figure 12: The CER on sentences of different lengths at dif-

ferent speech rates.

further confirms the feasibility of the proposed SVoice in feature

extraction.

To further evaluate the ability of to preserve user-relevant

speech characteristics (i.e., intonation, speech rate), one user is

asked to repeat the same sentence in various intonations. Intona-

tion is known to represent the configuration of the energy and

the pattern of pitch variation at the sentence level [44]. As shown

in Figure 10, The similarity of the energy configuration and the

pattern of pitch variations between the reconstructed speech and

the ground truth indicates SVoice’s ability to preserve intonation

information. Similarly, the temporal alignment of the reconstructed

speech and the ground truth in multiple repetitions demonstrates

the preservation of speech rate information.

We also compare with two state-of-the-art techniques, vision-

based Lip2Wav [48] and acoustic-based SoundLip [70]. We repro-

duce the experimental results of Soundlip using our dataset. Note

that since we are unable to obtain the corresponding vision dataset,

we directly use the results claimed in the paper. From the compar-

isons shown in Table 1, we can see that our system achieves better

intelligibility and CER for speech reconstruction than Lip2Wav.

While the speech quality of is slightly lower than that of Lip2Wav.

The reason is that we leverage MFCC as an intermediate feature for

speech reconstruction, instead of using the directly predicted spec-

trum. Compared to spectrum, MFCC leaves out spectrum details,

630



SenSys’22, Nov 6-9, 2022, Boston, USA Fu et al.

Figure 13: The virtual gesture generated by cGAN where

speech content is “fan3 zheng4 wo3 ting3 han2 xin1 de5”

(Anyway, I am quite chilled).

thus degrading the speech quality. Nevertheless, MFCC can prompt

the model to focus on speech content, which benefits the accuracy

and intelligibility of reconstructed speech. Also, in most cases, even

if the speech quality is a bit poor, it actually does not hinder people

very much from getting the key information. Notably, although we

use a lightweight neural vocoder to trade off latency and quality,

it is possible to reconstruct high-quality speech from MFCC with

heavy neural vocoders [45]. In addition, outperforms SoundLip on

CER since the latter focuses more on the task of voice command

classification rather than building complex mappings.

Speaker-dependant characteristics (e.g., speech rate) and speech

content (e.g., sentence length) may also affect the performance of

. As shown in Figure 12, we roughly divide the speech speed into

three levels: fast, medium, and slow, corresponding to faster than

260, between 160 and 260, and below 160 characters per minute.

We evaluate the effect of different numbers of characters of speech

content at each speech rate, where the speech content is randomly

selected from our corpus. The experimental results show that the

CER of decreases as the number of content characters increases,

which is expected since SiVoNet relies on contextual information.

maintains a CER of less than 10% at slow or moderate speech speeds

when the number of characters in a sentence is more than 4, which

is sufficient for everyday conversation in Mandarin. Sentences with

less than 4 characters are usually common phrases, which can be

considered separately for building multitasking networks [70]. We

note that although maintaining a fast speech rate (above 260/min)

causes more phoneme overlap between characters resulting in a

decrease in CER, SiVoNet can use contextual information to recover

the correct information when the number of characters is more

than 5. The above results show that can maintain high robustness

at various speech rates, especially in medium and long sentences.

Note that the above experiments are conducted in the case of

target vocalization for the systematic evaluation. However, our ac-

tual goal is to reconstruct the speech of silent people, so we also

analyze the effect of vocalization/silence on the ultrasound signal

for speech construction. We re-collected ultrasound information

for each target in silence as the silent test set. Due to the lack of

time-aligned reference speech to objectively compare the quality of

(a) Effect of the number of wild audio on
unseen sentences.

(b) Effect of the number of wild audio on
seen sentences.

Figure 14: Performance of SVoice’s virtual gesture generation

scheme.

Table 2: Objective speech quality, intelligibility and CER for

Ablation Study.

Method STOI ESTOI PESQ CER

Single Frequncy 0.61 0.48 1.33 45.98%

W/o Gradient 0.74 0.65 1.25 14.57%

W/o Transformer 0.72 0.64 1.51 13.56%

W/o RPE 0.71 0.63 1.45 10.36%

W/o Two-stream 0.74 0.66 1.27 9.27%

W/o Vocoder 0.59 0.41 1.14 8.71%

Doppler 0.77 0.67 1.41 6.41%

SVoice 0.77 0.72 1.53 5.72%

reconstructed speech in silence, we adopt a widely used subjective

evaluation technique, i.e., Mean Opinion Score (MOS) [55], to com-

pare the quality of speech. We recruit 20 listeners in the age range

of 19 to 50. The listeners are required to evaluate the reconstructed

speech quality of the test set collected during vocalization/silence,

then score the speech quality on a scale of 1 (poor) to 5 (excellent),

where 1 (poor) means that the audio is unintelligible and unclear,

and 5 (excellent) requires natural and smooth content. Besides, the

audio examples on a scale of 1 to 5 are provided to listeners as a

reference for scoring. We ensure that the listener does not know the

sentence’s content in advance. As shown in Figure 11, the speech

reconstruction quality of using the silence test set is slightly lower

than that of vocalization. The average CER and MOS scores of all

subjects during vocalization and silence are 5.72%, 4.23 and 7.62%,

and 3.98, respectively. This is expected due to the auditory feedback

effect [4], where humans unconsciously suppress the movement

of vocal organs (e.g., the tongue) during silent speech. Although

the performance of SVoice degrades in silence, its average CER is

still lower than that of the start-of-the-art methods. In addition, by

collecting additional silent data, the voiced/silent data discrepancies

can be eliminated using the techniques described in section 6.

8.1.2 Effect of virtual gesture generation. This experiment is de-

signed to investigate the effectiveness of the virtual gesture gen-

eration scheme. As shown in Figure 13, the directly generated

ultrasound signal is doped with a certain amount of noise com-

pared to the ground truth. We apply a Savitzky-Golay filter [36]

for high-quality speech synthesis to smooth the generated signal.

The smoothed ultrasound signals act as new training data along

with the original dataset to train the DNN model. To verify the

superiority of the virtual samples generated by cGAN in enriching
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(a) CER of diverse targets is basically sta-
ble.

(b) CER varies in different number of data
for fine-tuning.

Figure 15: Performance of SVoice’s user adaptability.

Figure 16: CER on different distance and orientation.

the corpus’ diversity, we compare the performance of our method

and the original back-translation on the various wild audios. Fig-

ure 14 displays the impact of the number of wild audios on the CER

of . Obviously, the introduction of virtual samples generated by

cGAN benefits speech reconstruction of both seen and unseen sen-

tences. As the audio signals of unseen sentences increase, the CER

of SVoice decreases continuously. Especially for unseen sentences,

the new data generated by cGAN dramatically reduces the CER

of from 40.19% to 7.63% when the audio is up to 500. Our method

outperforms back-translation with the same number of audio since

cGAN can create more virtual samples from the distribution of

the training set. With numerous virtual samples, however, both

techniques experience a performance reduction. As the number

of virtual samples rises, excessive noise is injected into the model,

which is detrimental to training the model. Although the number

of virtual samples created by back-translation is substantially lower

than that of our technique, the poor sample quality prevents it from

using a greater quantity of audio.

8.1.3 Adaptability to different users. We investigate adaptability to

different users when they only provide ultrasound signals. Consid-

ering the variation in timbre between males and females, we only

fine-tune the model using data from users of the same gender. In our

experiments, one male/female user serves as the source user, while

four male/female users serve as the target user. Figure 15 depicts the

experimental results. demonstrates its effectiveness in user adapta-

tion using only ultrasound data. We observe that using ultrasound

matching results in a lower CER since ultrasound matching reduces

the penalty associated with using temporal calibration. In addition,

we compare our method to the original scheme of fine-tuning using

ultrasound data with audio (i.e., changing the timbre). Compared

to the original scheme, converges faster, requiring only one hour of

data collection to reduce the CER to 9.42. However, as the amount

of data used for fine-tuning increased, the original scheme eventu-

ally outperforms , as timing calibration errors are always present.

Since our fine-tuning scheme aims to leverage unlabeled data for

user adaption, we use only naive fine-tuning methods, resulting in

the need for one-hour data from the new user. Advanced transfer

learning [17] methods can reduce the dependence on data, which is

one of our future works. Nonetheless, guarantees user adaptation

using only ultrasound data, which is crucial for the usability of SSI

in the aphasic.

8.2 Ablation Study

In this section, we conduct ablation experiments to quantitatively

investigate performance in speech reconstruction. To simultane-

ously compare the accuracy and quality of speech reconstruction,

we use the test dataset when subjects remain vocalized. We vali-

dated our approach by ablating specific components, the results are

shown in Table 2.

Single Frequency means only a single frequency CW signal is

emitted when sensing articulatory gestures. The results show that

using multiple frequency subcarriers can effectively suppress mul-

tipath effects and frequency selective fading, thus improving the

system’s stability.

W/O Gradient represents that coherent demodulation’s initial

phase and amplitude are directly used without differential process-

ing in the signal processing stage. The results show that differential

processing can eliminate the influence of static interference and

improve system performance.

W/oTransformermeans that the transformer structure is replaced

by a typical bidirectional LSTMmodule. The results show that using

the transformer can better capture the context information in the

time series and improve the sensing accuracy.

W/O RPE represents using the original absolute position encoding

instead of the relative position encoding. The results show that the

overall performance is slightly reduced, and the absolute position-

coding can better represent the positional relationship of the speech

temporal sequence.

W/o Two-streammeans that we remove the dual-stream structure

and stitch the differential phase and amplitude directly along the

channel dimension as the input of the feature embedding module.

The results indicate that the two-stream structure has a positive

effect on extracting and fusing the phase and amplitude variations.

W/o Vocoder represents that the LPCNet Vocoder is replaced by

the classic digital speech synthesis method Griffin Lim. It can be

seen that compared with the digital speech synthesis method, LPC-

Net Vocoder greatly improves the speech quality while has a slight

impact on the content accuracy.

Doppler represents the use of Doppler shift instead of differential

phase and amplitude. The results show that using Doppler can

achieve comparable performance with SVoice. However, due to the

obvious difference in Doppler of Ultrasound signals in vocalized

and silent, such as harmonics [57], the performance of synthesiz-

ing voice using Doppler features drops significantly in the case of

remaining silent.

8.3 Robustness Analysis

In this section, we analyze the robustness of SVoice under different

user-smartphone topologies, ambient noises, body motions, and
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Figure 17: CER on different ambient noise. Figure 18: CER on typical body motions. Figure 19: CER on various scenarios.

real application scenarios. In all experiments, subjects are asked to

hold the smartphone in their hands and remain silent.

8.3.1 Distance and Orientation. We evaluate the performance of

SVoice at different distances and orientations of the user’s mouth

relative to the bottom microphone of the smartphone. In this ex-

periment, the smartphone is used at different distances (from 1cm

to 10cm) and different orientations (from -60◦ to 60◦). The experi-

mental results are shown in Figure 16. We can see that SVoice can

achieve the CER within 10% stably from 2 to 5 cm and from -15 to

15 degrees, which is consistent with the habit of human voice in-

put. As the distance between the smartphone and the user’s mouth

increases, the CER of SVoice decreases continuously due to the

decay of ultrasound signals in the air and the weak signal fluctua-

tions caused by the lip movements. Nevertheless, SVoice is able to

keep the CER below 20% in the range of less than 8 cm. Notably,

a distance of less than 2 cm also degrades the performance, as the

ultrasound signal cannot fully capture lip movements at such a

close distance. Considering the fact that users are used to sending

voice to a smartphone within the range of 2cm to 5cm in most

cases, especially in public places, we believe that SVoice can be

easily integrated into the voice applications of the smartphone and

can maintain stable performance without changing users’ habits.

8.3.2 Ambient Noise. To evaluate the performance of SVoice in

different ambient noise conditions, we utilize an additional speaker

placed 40 cm apart from the subject as a noise source. Our ex-

periments involve four types of noise: music, speech, traffic, and

machine noise. The noise level is controlled at around 65dB. The

experimental results are depicted in Figure 17. It is obvious that

SVoice is robust to different types of noise even though our training

data is obtained in a controlled, quiet environment. This is because

the frequency band of the noise signal in daily life is mostly lower

than 10kHz, which can be successfully filtered by the coherent

detector in the signal processing stage of SVoice.

8.3.3 Body Motion. Users may be engaged in various body mo-

tions while using the smartphone, so we evaluate the robustness

of SVoice under several typical body motions, which we hypoth-

esized to generate large signal interference. We ask four subjects

to perform body motions, including ‘Stand Up’, ‘Hand Tremble’,

‘Hand Interference’, ‘Turn Around’ and ‘Walk’ while using SVoice

in silence, where ‘hand interference’ means the motion interfer-

ence from the other hand, and ‘hand tremble’ means that the user’s

hand shakes or moves unconsciously while holding the device. We

test the CER of 4 subjects under different body motions. As shown

in Figure 18, except for ‘walk’, SVoice achieves lower than 10%

average CER for various motion artifascts of daily living. This is

due to the fact that we maintain the diversity of body poses of

the user’s handheld device during the data collection stage. We

believe the inferior accuracy for ‘Walk’ is caused by the complex

dynamic disturbances in larger spatial degrees of freedom during

walking. However, we believe there is a potential to mitigate these

interferences by leveraging richer body motion datasets, and we

leave it as our future work.

8.3.4 Environmental Disturbance. In addition to evaluating in an

uncontrolled laboratory environment, we also look at performance

in real-world scenarios full of uncontrollable factors. Here we con-

sider six typical scenarios: a quiet office as a reference, a library

with many people, a roadside with heavy traffic, a noisy restaurant,

a crowded subway, and walking in a crowded subway station. From

the experimental results displayed in Figure 19, we observe that the

average CER in each scenario is 7.64%, 7.58%, 8.25%, 8.29%, 11.31%,

and 15.97%, respectively. The result indicates that SVoice is robust to

most open scenarios, where SVoice achieves a CER of less than 9%.

We note that the performance of SVoice degrades slightly in some

crowded scenarios due to interference from other individuals and

worsens when coupled with the user’s motion (e.g., walking). This

challenge may be addressed by using neural networks or modeling

to eliminate the effects of non-interesting user movements [11]

and device motions [37], which is critical for wireless sensing tasks

but not our main work in this paper. In a word, the results of this

experiment confirm that SVoice can reconstruct accurate and audi-

ble speech from the user’s silent speech in a variety of real-world

scenarios, demonstrating the capability of SVoice to enable covert

speech communication in public.

9 DISCUSSION

Device Portability. Different smartphones may have different

layouts of speakers and microphones. For example, the bottom

microphone and speaker of the Samsung S8 are on the same side,

while the VIVO X20 is on each side. There are also differences in the

frequency response of microphones and speakers among different

smartphone models[1]. Applying the DNN model trained on the

training data collected on the Samsung S8 to other devices may

degrade the performance of SVoice. In order to be widely deployed

on smartphones, one option is to consider collecting larger datasets

containing a rich variety of phone models. Another approach is to

fine-tune the model on a small number of samples collected on new
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devices, which has been proven to be an effective approach[70].

System Efficiency. We discuss the system efficiency of SVoice in

terms of time and energy consumption. We implement SVoice in a

client/server format, i.e., ultrasound signals acquisition and upload-

ing are made on the Samsung Galaxy S8 smartphone, and signal

processing and model inference are performed at the server. The

average time delay of the signal processing is 168ms due to coher-

ent detector and multi-frequency mechanism processing. Although

the transformers can be run in parallel to improve model inference

speed, the average latency is still 287ms. Currently, almost all com-

puting tasks in SVoice are performed on the server. Extensive works

have shown that using a mobile GPU/NPU can significantly reduce

latency[57, 71]. We plan to design a more lightweight network to

support inference on mobile devices fully. Since the function of the

mobile device only needs to transmit and collect ultrasonic signals,

the energy consumption level is relatively low (16.84 mAh) com-

pared to the typical battery size of a smartphone (3000 mAh)[71].

Therefore, the current energy consumption of SVoice on mobile

devices can fully meet the needs of daily life.

Timbre and Language Adaptability. Although SVoice provides

a solution to guarantee the user adaptability of SSI to different

users, it still requires new users to contribute some new data for

model fine-tuning, which may not meet the expectations of general

SSI. A potential solution is leveraging crowdsourcing to collect

training datasets covering multiple users and train a general model

using our proposed timing warping loss function. Considering that

vocal timbre may a piece of potential privacy information, such

as identity authentication, another possibility is to add a speaker

embedding module[38] to extract speaker-independent features to

train a general model that can change vocal timbre. In addition, an-

other potential opportunity is inter-language generality. Although

SVoice is only trained and evaluated on the Mandarin dataset, the

correlations between speech and articulatory gestures in different

languages are similar. Therefore, we believe that SVoice has inter-

language potential if we collect datasets covering more languages.

Limited Sensing Range. The sensing range of SVoice is limited

due to the fast attenuation of the acoustic signal in the air. In addi-

tion, wearing a mask has become the norm for most people outside

under the influence of COVID-19. However, additional losses are

incurred when ultrasound passes through the mask, resulting in a

significant reduction in SVoice’s performance (CER of 32.92%). To

address this challenge, one of our future works is to unleash the

potential of SVoice in reconstructing audible audio on other mobile

devices, such as earphones [54], by utilizing ultrasound to sense

the deformation of the ear canal during silent speech.

10 RELATEDWORK

Acoustic-based articulatory gesture sensing: SottoVioce[32]

converted ultrasonic images captured by ultrasonic imaging sensor

into audible speech by using a two-level CNN network. It achieves

high imaging accuracy but requires specialized equipment. Some

works utilize ultrasound for articulatory gesture sensing based

on commercial devices[10, 40, 57, 60, 68, 71]. Zhang et al.[68] au-

thenticated live users by leveraging their unique articulatory ges-

tures. However, similar authentication work focuses on the differ-

ences in users’ articulatory gestures when speaking passphrases.

WaveVoice[71] and UltraSE[57] fuse speech and ultrasonic features

for speech enhancement, but they only use ultrasound as supple-

mentary information. SilentTalk[59] is a lip-reading system based

on the ultrasonic Doppler effect that enables 12 basic lip motions

identification. Endophasia[72] distinguishes 20 silent commands by

generating a two-dimensional motion profile of ultrasonic sensing

signals. EchoWhisper[20] and SoundLip[70] provide word-level and

sentence-level silent command recognition based on smartphones,

respectively. There are three main differences between our work

and recent works. First, SVoice aims to achieve a regression task

that focuses on establishing mapping relations between articulatory

gestures and speech, while recent works are devoted to classifying

predefined words or sentences. Second, SVoice has the potential

to recover speaker-dependant information from ultrasound, which

is not considered in existing works. Third, we propose a data aug-

mentation mechanism for generating ultrasound from wild audio,

which can increase the scalability of the system on the unseen sen-

tences, rather than being limited to the seen sentences.

Silent speech reconstruction: Vision-based approaches demon-

strate superior performance in speech restoration[6, 10, 16, 27, 28,

46, 56]. Petridis et al. [46] present an end-to-end visual speech

recognition system based on LSTM networks. Ephrat et al. [16]

proposed a method to generate speech audio from silent video

using a CNN-based model. However, vision-based solutions are

constrained by lighting conditions and require cameras to monitor

users’ faces, which may cause privacy concerns. Wearable device-

based approaches have also been proposed for speech recognition[4,

14, 19, 22, 30, 65]. Gaddy et al.[19] measured silent lip movements

by EMG sensors to synthesize audio. Gonzalez et al. [22] converted

articulatory gestures captured by permanent magnet articulogra-

phy (PMA) into audible speech. Anumanchpalli et al. [4] designed a

neural decoder that leverages electrocorticography (ECoG) signals

to reconstruct audible speech. These works require users to wear

specialized devices continuously, making them inconvenient and

uncomfortable.

11 CONCLUSION

This paper presents SVoice, a silent speech interface that can re-

construct audible speech from silent articulatory gestures using an

ultrasonic signal generated by a portable smartphone. It contributes

three tailored techniques: an end-to-end model that establishes the

independent mapping relationship between audible speech and

signals disturbance information caused by articulatory gestures,

a cross-modal data augmentation mechanism that can generate

virtual articulatory gestures from widely available audio, a user

adaptation technique that utilizes a small amount of unlabeled ultra-

sound data to fine-tune the model for different users. The extensive

experiments demonstrate that SVoice has great potential to support

secret communication in public and restore voice for aphasics.
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