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Abstract—Silent Speech Interface (SSI) have been developed to convert silent articulatory gestures into speech, facilitating silent
speech in public spaces and aiding individuals with aphasia. Prior arts of SSI, either relying on wearable devices or cameras, may lead
to extended contact requirements or privacy leakage risks. Recent advancements in acoustic sensing offer new opportunitis for gesture
sensing. However, they typically focus on content classification rather than on reconstructing audible speech, leading to the loss of
crucial speech characteristics such as speech rate, intonation, and emotion. In this paper, we propose UltraSR, a novel sensing system
that supports accurate audible speech reconstruction by analyzing the disturbance of tiny articulatory gestures on the reflected
ultrasound signal. The design of UltraSR introduces a multi-scale feature extraction scheme for aggregating information from multiple
views, and a new model that provides the unique mapping relationship between ultrasound and speech signals, so that the audible
speech can be successfully reconstructed from the silent speech. However, establishing the mapping relationship depends on plenty of
training data. Instead of the time-consuming collection of massive amounts of data for training, we construct an inverse task that
constitutes a dual form with the original task to generate virtual gestures from widely available audio (e.g., phone calls) for facilitating
model training. Furthermore, we introduce a fine-tuning mechanism using unlabeled data for user adaptation. We implement UltraSR
using a portable smartphone and evaluate it in various environments. The evaluation results show that UltraSR can reconstruct speech
with a (Character Error Rate) CER as low as 5.22%, and decrease the CER from 80.13% to 6.31% on new users with only 1 hour of
ultrasound signals provided, which outperforms state-of-the-art acoustic-based approaches while preserving rich speech information.

Index Terms—Acoustic sensing, Silent Speech Interface, Human-computer interaction.

✦

1 INTRODUCTION

Speech interfaces play a crucial role in facilitating
both human-to-human and human-to-machine interactions.
Nonetheless, speech interfaces face challenges in various
scenarios, including privacy concerns in public places and
soundless requirements in silent places. Silent Speech In-
terface (SSI) is an advanced technology that enables silent
voice interaction in public by reconstructing speech from
silent articulatory gestures. It not only opens a covert way
for voice-based interactions but also can help people who
have acquired voice disorders (e.g., laryngectomy) to regain
the ability to speak.

Accurately capturing articulatory gestures is an essential
prerequisite for SSI. To achieve this goal, classical SSI solu-
tions commonly use various wearable sensors (e.g., EMG,
EEG) [1]–[3] to sense the movements of vocal organs (e.g.,
lips, tongue). Although promising, these wearable sensors
require body contact or even device implantation, which
hinders the user’s daily activities and may cause ana-
phylactic reactions (e.g., skin irritations). To achieve user
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transparency, contactless methods have been widely stud-
ied for various SSI applications. A representative category
is to leverage vision information to extract the features
of the articulatory gestures and generate corresponding
speech [4]–[7]. However, cameras raise privacy issues and
may perform poorly in low-light conditions. In order to
overcome the limitations of vision-based methods, recent
advances have explored how to use wireless signals (e.g.,
WiFi [8] and acoustic [9]–[12] ) for articulatory gesture
sensing. Nevertheless, current wireless-based solutions are
unsuitable, since the original intention of inferring speech
content from reflected signals for command classification
instead of reconstruction of audible speech, results in the
loss of some vital speech information such as speech rate,
intonation, and emotion. Consequently, how to acquire a
manner that can enable silent speech reconstruction using
wireless signals remains an open challenge.

In this paper, we develop a Ultrasound-based Silent
speech Reconstruction (UltraSR) system that can be de-
ployed on commercial mobile devices (e.g., smartphones).
UltraSR is enabled by inaudible acoustic sensing, which is
easy to deploy due to ubiquitous speakers/microphones
and easier to capture fine-grained vocal gestures due to the
slow speed of sound in air. Figure 1 illustrates the practical
use case of UltraSR, including silent speech in public and
assisting aphasics to speak with voice. UltraSR employs a
regression model, which maps articulatory gestures directly
to audible speech via ultrasound for restoring rich speech
information.
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Figure 1: Motivating examples of UltraSR. The (a) shows
how UltraSR can help people to communicate with the voice
in silent conditions to prevent eavesdropping. The (b) shows
UltraSR as a new interactive interface to restore voice for
people who have acquired voice disorders.

To realize this high-level idea, we need to address the
following challenges. To begin with, exploiting ultrasound
as the vinculum between articulatory gestures and speech is
nontrivial for two reasons. Firstly, it is challenging to extract
fine-grained changes from reflected signals caused by the
fast (-80cm/s˜80cm/s) and subtle (¡5cm) movements, then
reconstruct high-dimensional speech from low-dimensional
ultrasound. Secondly, since speech is the result of a high
degree of overlap and continuous movements [13], the map-
ping relationship between articulatory gestures and speech
is notoriously complex. The complex mapping relationship
makes it difficult for DNN models trained on the dataset
with a limited number of sentences to maintain generaliza-
tion on unseen sentences. Therefore, it requires plenty of
training data containing diverse sentences compared to clas-
sification tasks, which drives unaffordable data collection
overhead. Moreover, UltraSR should guarantee adaptability
to different users. However, since speech reconstruction is
notoriously speaker-dependent due to the differences in
vocal timbre, getting a generic model by training is ardu-
ous. Although fine-tuning offers a viable option, sufficient
pairwise training data is required to transform timbre. More
importantly, people who have acquired voice disorders are
inadequate to provide an audible speech.

To tackle these challenges, we first fully exploit the
advantages of ultrasound and speech, i.e., high sampling
rate and rich contextual information, respectively. Going
further than SVoice [14], in addition to considering the
phase and amplitude changes of the reflected ultrasound
signals, we also contemplate incorporating speed variations
into the feature space. We design a Multi-Scale Feature Ex-
traction (MSFE) strategy to capture high-resolution features
from ultrasound echoes. This strategy integrates multi-view
spectrogram features of articulatory gestures, encompassing
changes in distance, energy, and speed. Following this, we
deploy a triple-stream convolutional structure along with
multiple attention heads to extract a multi-channel context
from the ultrasound signals, aiming to reconstruct high-
dimensional speech. To reduce the data collection overhead
of establishing the mapping relationship, we exploit the
rich sentence diversity in wild audio (e.g., phone calls),
and construct an inverse task that constitutes a dual form
with the original task inspired by the back-translation.
The inverse task aims to generate virtual articulatory ges-

tures from wild audio based on conditional GAN (cGAN)
and cross-modal similarity measure network, enabling the
widely available data from the target domain to facilitate
model training. Moreover, we propose a fine-tuning scheme
and design a tailored loss function that utilizes unlabeled
ultrasound signals and cross-domain temporal calibration
to fine-tune the DNN model for new users. Finally, we
implement UltraSR on a portable smartphone and verify
its superior performance compared to existing baselines in
various environments.
Contributions: To summarize, our main contributions are
as follows:

• We propose UltraSR, a novel Silent Speech Interface
that reconstructs audible audio from silent articula-
tory gestures via acoustic sensing, while preseving
rich speech information.

• We propose a multidimensional spectral feature ag-
gregation scheme, which enhances the representa-
tional capabilities of ultrasound for articulatory ges-
tures from multiple scale perspectives.

• We design a cross-modal data augmentation mech-
anism that can generate virtual articulatory gestures
from wild audio. Such a dual form can enable widely
available data from the target domain to facilitate
model training, which can be readily extended to
other wireless sensing tasks.

• We present a user adaptation technique that utilizes
a small amount of unlabeled ultrasound data to fine-
tune the model for different users.

• We collect a new dataset and conduct extensive
experiments to demonstrate the performance of our
system. The experimental results show the high effi-
ciency and robustness of UltraSR, achieving a CER of
5.22%, and decreasing the CER from 80.13% to 6.31%
on new users with only 1 hour of ultrasound signals
provided.

2 RELATED WORK

In this section, we first introduce the research about
acoustic-based articulatory gesture sensing and then discuss
silent speech reconstruction.

2.1 Acoustic-based Articulatory Gesture Sensing

SottoVoce [15] represents an innovative approach in speech
technology, which employs a two-level CNN network to
transform ultrasonic images into audible speech. Despite
its high imaging accuracy, relying on specialized equip-
ment limits its widespread applicability. In contrast, sev-
eral studies have explored the use of commercial devices
for sensing articulatory gestures via ultrasound [16]–[21].
For instance, Zhang et al. [22] authenticate live users by
analyzing their unique articulatory gestures. At the same
time, other research primarily focuses on discerning users’
gesture differences when uttering passphrases. WaveVoice
[19] and UltraSE [20] both leverage speech and ultrasonic
features for enhancement, albeit treating ultrasound more as
supportive data. SilentTalk [9] is a lip-reading system using
the ultrasonic Doppler effect, capable of recognizing 12
fundamental lip motions. Endophasia [12] distinguishes 20
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silent commands by creating a two-dimensional motion pro-
file from ultrasonic signals. EchoWhisper [10] and SoundLip
[11] extend this technology for word-level and sentence-
level silent command recognition using smartphones. Our
work stands distinct from these recent studies in three
key respects. Firstly, we focus on establishing mapping
relations between articulatory gestures and speech through
regression tasks instead of classifying predefined words
or sentences. Secondly, our methodology aims to recover
speaker-dependent information from ultrasound, a facet not
explored in existing studies. Lastly, we introduce a novel
data augmentation mechanism that synthesizes ultrasound
from wild audio, thereby broadening the system’s scalability
to encompass unseen sentences, not just pre-recorded or
predefined. This approach significantly enhances the versa-
tility and practicality of our system, making it a promising
solution for real-world applications.

2.2 Silent Speech Reconstruction
Vision-based techniques have been increasingly recognized
for their effectiveness in speech restoration, with numer-
ous studies demonstrating their potential [4]–[6], [21]. For
instance, Petridis et al. [5] pioneered an end-to-end vi-
sual speech recognition system employing LSTM networks,
while Ephrat et al. [6] developed a CNN-based model to
produce speech audio from silent video footage. These
methods, however, are generally constrained by environ-
mental factors such as lighting conditions and necessitate
continuous camera surveillance of the user’s face, leading to
potential privacy issues. Parallel to these, wearable device-
based approaches have emerged as alternatives for speech
recognition [1], [2], [23]. Gaddy et al. [1] utilized EMG
sensors to measure silent lip movements for audio synthesis.
Gonzalez et al. [24] converted articulatory gestures detected
by permanent magnet articulography (PMA) into audible
speech. Anumanchipalli et al. [3] created a neural decoder
reconstructing audible speech from electrocorticography
(ECoG) signals. While promising, these approaches often
involve using specialized equipment, which can be cum-
bersome and intrusive for users. In contrast, UltraSR offers
a more user-friendly alternative. It stands out as a non-
invasive, cost-effective solution, leveraging the widespread
availability of smartphones. This approach does not require
users to wear specialized devices, nor does it depend on
specific environmental conditions like lighting. As a re-
sult, UltraSR is more convenient and comfortable for users
and addresses privacy concerns associated with continuous
facial monitoring. Its adaptability to existing smartphone
technology makes it a practical and accessible option for
a broader user base, aiming to revolutionize the field of
speech restoration and recognition.

3 SENSING ARTICULATORY GESTURES VIA UL-
TRASOUND

In this section, we introduce the possibility of using ultra-
sound to capture the articlatory gestures.

3.1 Principles of Silent Speech
Human speech is a complex process involving the coordina-
tion of various organs. The pitch of sound is a crucial aspect
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Figure 2: Capturing multiple vocal organs using CW signals,
where (a), (b), and (c) is for mouth, cheek, and tongue,
respectively.

of articulation and generated through unique vibration pat-
terns of the vocal cords. Moreover, the intricate movements
of several organs, such as the lips, tongue, and jaw, give
rise to a range of articulatory gestures [25]. These gestures
closely work with the vibrations of the vocal cord to produce
a single phoneme [26], the fundamental units of speech.

In silent speech, the vocal cord vibrations are notably
subdued or absent while the movements of facial muscles
such as the lips, jaw, and tongue remain. These articulatory
gestures are essential for silent speech interfaces as they pre-
serve the patterns vital for producing speech. By capturing
and precisely interpreting these movements, audible speech
can potentially be reconstructed. This offers innovative av-
enues for speech communication, instrumental in situations
where vocal speech is impractical or unwanted. Under-
standing and utilizing the intricate link between these ges-
tures and phonemes is critical to developing silent speech
reconstruction technologies.

3.2 Signal Design
However, articulatory gestures are very subtle and rapid,
typically lasting 100-700ms [20] and moving less than
5cm [27], making it challenging to capture the fine-grained
gesture motion by using a single microphone [9]. Spe-
cific commonly employed modulation signals, such as Fre-
quency Modulated Continuous Wave (FMCW) [28] and Or-
thogonal Frequency Division Multiplexing [29], are less con-
ducive to capturing the continuous articulatory movements
due to the presence of signal intervals. Although triangle
wave modulation [30] ensures continuous signal output, it
disperses energy across various harmonics, diminishing its
capacity for high-precision distance resolution. Therefore,
we seek fine-grained sensing using continuous wave (CW).
It is noteworthy that CW signals can continuously track
articulatory gestures, ensuring no critical information is
missed.

Further, we validate the capability of capturing various
articulatory movements using CW signals, including actions
of the mouth, cheeks, and tongue. As illustrated in Figure 2,
the start and end of these movements are clearly observable
in the amplitude and phase changes. Distinct characteristic
patterns emerge from different organ activities, and each
organ’s movement is continuously captured by the CW
signals throughout its activity.
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Figure 3: The system architecture of UltraSR mainly consists of acoustic sensing and gestures extraction modules, MUSNet
for synthesizing speech from ultrasound, cGAN for generating virtual gestures from speech, and a fine-tuning mechanism
using label-free data.

Specifically, we set the transmit signal as Acos(2πft),
where A is the amplitude and f is the frequency of the
signal. The CW signal is transmitted by commercial acoustic
equipment with a sampling rate of 48 kHz, and each sam-
pling point can capture one feature point, i.e., the resolution
can reach 0.71 cm. In addition, multiple single-frequency
subcarriers are chosen to resist multipath effects, where the
frequency band ∆f is set to 700 Hz to prevent interfer-
ence. Considering that most commercial devices support
the inaudible frequency band of 17-22 kHz, the number of
subcarriers N is set to 8. Finally, the final transmit signal
is T (t) =

∑N
i=1 Acos(2πft), where i is the i-th subcarrier

and fi represents the frequency of each subcarrier. No-
tably, all of our design components are not tailored to any
specific acoustic frequency band. The reason we select the
17kHz to 22kHz range for this paper is that it is largely
inaudible to most people, thereby being more user-friendly.
Furthermore, this frequency range is less susceptible to
environmental interference, as the majority of acoustic noise
in environments falls below 8kHz. If we expand the UltraSR
to include audible frequencies (below 17kHz) or higher
frequencies (above 22kHz), the UltraSR’s performance is ex-
pected to benefit predictably from the increased bandwidth.

4 SYSTEM OVERVIEW

UltraSR is designed to fulfill the following objectives:1)
reconstruct precise and natural speech from ultrasound in
silence with affordable model training cost; 2) guarantee the
adaptability to different users. Figure 3 depicts the system
architecture of UltraSR.

In the training stage, we collect the vocalized speech
from source user, which contains synchronously recorded
ultrasound and audio. After signal processing, the ultra-
sound signals are converted to multi-channel amplitude and
phase gradients as well as Doppler and form training data
pairs with audio. UltraSR utilizes the precise temporal align-
ment of ultrasound and clean audio to train the MUSNet
network to establish correspondence. Furthermore, a well-
designed virtual gesture generation method is applied to

substantially increase the number of training samples to
facilitate model training. In the inference stage, a small
amount of silent speech (without audio) from the target user
is employed to fine-tune the model for optimal prediction
outcomes. Note that the collected vocalized speech shown in
Figure 3 is only used during the training stage and the fine-
tuned MUSNet model can be applied directly for inference.
To achieve the above goals, UltraSR integrates four core
components:
Gestures Extraction (Section 5) We design a series of signal
processing to detect and segment vocal actions from echo
signals, and propose a multi-scale feature extraction to
aggregate information from multiple views.
MUSNet (Section 6) We design a tailored speech reconstruc-
tion model, named MUSNet, which can extract and fuse
the phase, amplitude, and Doppler features of ultrasound
and contextual information, and then quickly generate the
corresponding clear and intelligible speech.
Virtual Gesture Generation (Section 7) To establish the
complex mapping between speech and articulatory ges-
tures, we design a virtual gesture generation strategy based
on cGAN to reduce involved data collection costs. Inspired
by back translation in machine translation, our design uti-
lizes easily collected audio (e.g., voice records or voice
chats) to reversely synthesize ultrasound signals to increase
the number of training samples for articulatory gestures
and real speech data pairs, thereby advancing MUSNet to
learn complicated mapping relationships and enhancing the
generalization ability of MUSNet to unseen sentences.
User Adaptation (Section 8) The intuition is that the de-
termining factor for the change of ultrasound signal is the
speech content corresponding to the articulatory gesture,
and ultrasound contains fewer personal characteristics (e.g.,
timbre) than audio. Consequently, to accommodate various
users, UltraSR develop a fine-tuning scheme to match the
unlabeled ultrasound signal from the target user and the
audio with the same speech content from the source user
as training data pairs, avoiding the timbre problem. We
construct a new loss function to reduce timing distortion
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between cross-user data pairs, which enables us to fine-tune
the MUSNet model for new users.

5 GESTURES EXTRACTION

In this section, we detail the signal processing process,
including gesture detection and extraction of features from
multiple perspectives.

5.1 Gesture Detection
Before extracting features, we need to detect the occurrence
of vocal movements to isolate pertinent data segments. To
effectively identify silent speech events within echo signals,
we utilize a combination of a Likelihood Ratio Test (LRT)
and a Hidden Markov Model (HMM)-based event detection
module. This approach is specifically designed to eliminate
segments with undesirably low echo power density, thereby
enhancing the accuracy and relevance of the data extracted
for further analysis. This is accomplished by:

H0 : absence : X = N

H1 : presence : X = N + S
(1)

where S, N , X are Discrete Fourier Transform (DFT) coef-
ficient vectors of reflected signals with movements, noise,
and movements with noise, with their kth elements Sk, Nk,
and Xk, respectively.

Then, we have the probability density functions condi-
tioned on H0 and H1:

p (X | H0) =

L−1∏
k=0

1

πλN (k)
exp

{
− |Xk|2

λN (k)

}

p (X | H1) =

L−1∏
k=1

1

π [λN (k) + λS(k)]
· exp

{
− |Xk|2

λN (k) + λS(k)

}
(2)

where λN (k) and λS(k) denote the variances of Nk and
Xk. The likelihood ratio for the kth frequency band is

Λk
p (Xk | H1)

p (Xk | H0)
=

1

1 + ξk
exp

{
γkξk
1 + ξk

}
(3)

where ξk and γk are called a priori and a posteriori SNR.
The decision rule is obtained from the average likelihood
ratio for each band, which is given by

log Λ =
1

L

L−1∑
k=0

log Λk
H1

H0

η (4)

As depicted in Figure 4, for a microphone-captured signal,
our initial step is to ascertain the probability of events for
each frame. Subsequently, we focus on segmenting those
frames that exhibit high probabilities, specifically targeting
frames that correspond to events such as articulatory ges-
tures.

5.2 Multi-Scale Feature Extraction
To maximize the extraction of articulatory gestures from
reflected signals, we propose a Multi-Scale Feature Extrac-
tion (MSFE) mechanism to benefit from multiple perspec-
tives. As shown in Figure 5, we extract phase, amplitude,
and Doppler from the echoes to represent changes in the
distance, energy (reflected area), and velocity of the articu-
latory organs, respectively. This MSFE mechanism enhances
the diversity of feature extraction, thereby enhancing the
capability of capturing of vocal gestures.
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Figure 4: Gesture detection.
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Figure 5: The Multi-scale feature extraction scheme.

5.2.1 View of Distance and Energy
For the distance and energy perspectives, we design several
steps for signal processing. Specifically, we fisrt separate
the ultrasonic waves from the reflected signals by using a
high-pass filter, and passed through a band-pass filter to
obtain the signal Ri(t) = A′

icos(2πfit + ϕi), where A′
i is

the amplitude of the i-th subcarrier and ϕi is the phase
shift of the i-th subcarrier. Then, the amplitude and phase
of the signal are obtained using a coherent demodulator.
Specifically, we multiply the filtered signal by cos(2πft):

Ri × cos(2it) = Aicos(2πft+ ϕ)× cos(2πfit)

=
Ai

2
cos(4πft+ ϕ)× Ai

2
cos(ϕ).

(5)

Similarly, we multiply the filtered signal by −sin(2πft):

Ri × sin(2it) = Aicos(2πft+ ϕ)×−sin(2πfit)

= −Ai

2
sin(4πft+ ϕ)× Ai

2
sin(ϕ).

(6)

We filter out the additionally introduced high frequency 2f
through a low-pass filter and then obtain I = Ai

2 cos(ϕ), Q =
Ai

2 sin(ϕ). For reducing the computational cost of training
the DNN model, the I , Q signals are smoothed by the mean
filter. Finally, in order to eliminate static interference, we
obtain the signal gradients using the differential approach
by subtracting the previous sample point from the latter one,
i.e. Ri(t)

′ = Ri(t)−Ri(t− 1).

5.2.2 View of Speed
For the extraction of velocity perspective features, we use
the short-time Fourier transform (STFT) to extract the time-
frequency spectrum. To mitigate the impact of dominant
center frequency components, we discard the information
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from three bins in the central range of each subcarrier. It’s
important to note that our signal processing window size
aligns with standard speech processing practices. Note that
our signal processing window size remains consistent with
speech processing. The 2D patterns are highly correlated
with Vocal organs’ movements. Furthermore, we define the
spectrogram as the Power Spectral Density of the function:

spec{x(t)}(τ, ω) ≡ |X(τ, ω)|2 =

∣∣∣∣∣
∞∑

n=−∞
x[n]ω[n−m]e−jωn

∣∣∣∣∣
2

(7)
where x[n] represents input signal, while ω[n − m]

denotes the overlapping Kaiser window function with an
adjustable shape factor β that enhance the resolution and
minimize spectral leakage close to the sidelobes of the
signal. To calculate the coefficients of the Kaiser window,
we follow a specific computation method:

ω[n] =

I0

(
β

√
1−

(
n−N/2
N/2

)2)
I0(β)

, 0 ≤ n ≤ N
(8)

5.2.3 Correlation Between Ultrasound and Speech
To validate the relationship between the received ultrasound
signals and the speech content, we conduct this proof-of-
concept. In this experiment, we ask a subject to say
“A, B, C, D” once each while remaining vocalized and
silent, respectively. The microphone on the bottom of
the smartphone is fixed 4 cm in front of the subject.
Figure 6 shows the fluctuations of the amplitude gradients,
phase gradients, and Doppler spectrum in channel 1
(17 kHz) caused by articulatory gestures. We observe a
clear correspondence between ultrasound and speech. In
addition, the fluctuation patterns of phase and amplitude
gradients as well as Doppler are similar with the same
speech content between vocalized and silent conditions,
but distinguishable with different speech content. Based
on this observation, we demonstrate the feasibility of
reconstructing the human voice using ultrasound in silence.

6 SPEECH RECONSTRUCTIONS

MUSNet is designed to reconstruct audio from ultrasound
signals, as shown in Figure 7, which consists of three main
modules: (1) Feature Embedding Module, which is to extract
feature embeddings from the output of MSFE, including
phase, amplitude, and Doppler fluctuations; (2) Speech Pa-
rameters Predictor, which is to predict speech parameters
using the contextual information in feature embeddings; (3)
Vocoder Module, which is to rebuild clear and audible audio
from speech parameters.

6.1 Feature Embedding
The phase gradients, amplitude gradients, and Doppler
of the ultrasound signal with time series length Tu are
sent into the feature embedding module, denoted as Up ∈
RTu×Cu

, Ua ∈ RTu×Cu

and Ud ∈ RTu×Cu

respectively,
where Cu = 8 is determined by the number of subcarriers.
The “blue” part in Figure 7 illustrates the basic structure of

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

16.8

17

17.2

-60

-40

-20

0

dB

-0.5

0

0.5

-0.5

0

0.5

Am
pl
itu
de

-0.5

0

0.5

-0.5

0

0.5

Am
pl
itu
de

-0.5

0

0.5

Ph
as
e

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

16.8

17

17.2

Fr
eq

ue
nc

y 
(k

H
z)

-80
-60
-40
-20
0
20

dB

(a-1) Voiced audio (a-2) Silent audio

(b-1) Voiced amplitude gradient (b-2) Silent amplitude gradient

(c-1) Voiced phase gradient (c-2) Silent phase gradient

(d-1) Voiced doppler (d-1) Voiced doppler

‘A’

‘B’

‘C’

‘D’

Air flow

-0.5

0

0.5

Figure 6: A subject is asked to utter “A, B, C, D” while
remaining vocalized and silent, respectively. (a), (b), (c) are
the speech and ultrasound signals collected during vocal-
ization, while (d), (e), (f) are collected during silence. The
fluctuations in the gradients of phase and amplitude are
correlated with human speech and similar during vocalized
and silent speech.

the module. Considering the different noise and fluctuation
patterns of phase and amplitude, MUSNet first applies a
dual-stream structure with 1D convolution Resblocks [31] to
extract the features of Up and Ua separately along the time
dimension. In each stream, downsampling convolutional
kernels are employed to reduce duplicate information in
the temporal dimension and align with speech features’
temporal resolution. Notably, the dual streams are trained
independently without sharing weights. Then, MUSNet
concatenates the outputs of the triple streams along the
channel dimension and feeds them into multi-layer 1D
convolution to fuse the two types of features and transform
them into the same feature space.

Note that all the above convolutional layers employ
dilated convolution to increase the perceptual field of the
convolutional kernels in the time domain and to better
aggregate the information in the temporal dimension.

6.2 Speech Parameters Predictor

The primary challenge faced by MUSNet lies in recon-
structing a high-dimensional audio waveform from low-
dimensional sensing data, a process often hindered by sig-
nificant information loss. To tackle this, MUSNet shifts its
focus from directly predicting temporal waveforms to lever-
aging intermediate representations of speech features, pre-
cisely the Mel-frequency cepstral coefficients (MFCC) [32].
This approach simplifies the task by mapping feature em-
beddings at each time slot to their corresponding MFCC,
which encapsulate vital amplitude envelope information of
the audio signal in the time-frequency domain while dis-
carding the phase information. However, the sensing feature
at an individual time slot often falls short of accurately
predicting MFCC owing to its limited information scope. To
overcome this, we implement a bi-directional Transformer
encoder [33]. Its multi-headed attention mechanism is adept
at extracting contextual information from the feature em-
beddings across multiple dimensions and extending over
a broader time horizon. This advanced method enhances
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the accuracy and efficiency of MUSNet in reconstructing
complex audio waveforms from limited sensing data.

Treat the output Uo = (Uo
1 , . . . , U

o
Tm) of the feature em-

bedding module as the input, where Uo
i ∈ Rd, i = 1, . . . , Tm

and d represents the hidden layer dimension. For the input
time series Uo, each attention head computes the scaled dot-
product attention over each subspace in parallel, and out-
puts a sequence Z = (Z1, . . . , ZTm) of the same time length.
Thus, the output sequence Z is linearly weighted by each
element in the input sequence Uo. The naive multi-head
attention mechanism ignores the positional relationship of
each element in the input sequence. Although there is no
strict timing restriction on vocalizations, some vocalizations
are generally regulated by grammatical expression rules,
some vocalizations still have a relative sequence relationship
(such as fixed phrases). MUSNet uses learnable relative po-
sition embeddings instead of absolute position embeddings
for capturing time-invariant relative position relationships
in Uo. Each element Zi ∈ Rd/h, i = 1, . . . , Tm in the output
Z of each attention head can be expressed as:

Zi =
Tm∑
j

αi,j(U
o
j W

V + pVi,j), (9)

where

αi,j = softmax(
(Uo

i W
Q)(Uo

j W
K + pKi,j)

T√
d/h

). (10)

WQ, WK , WV represent the trainable query matrix, key
matrix, and value matrix, respectively. The matrices are
unique in each attention head. αi,j represents the weight
coefficient which is calculated by computing WQ and WK .
p(i,j) represents the relative position distance between Uo

i

and Uo
j within a clipping distance k, which is only related to

the relative distance of i and j and the learnable parameters
ω. pK(i,j) and pV(i,j) can be written as:

pKi,j = ωK
clip(j−i,k), (11)

where
clip(x, k) = max(−k,min(k, x)). (12)

The predicted MFCC speech parameters M ∈ RTm×dm

can be obtained by concatenating the outputs of multiple
attention heads and going through a linear projection layer.
dm = 39 is the dimension of MFCC.

6.3 Vocoder

The vocoder module is designed to reconstruct the speech
waveform in the time domain from speech parameters, a
process that critically influences the quality of the syn-
thesized speech. Traditionally, vocoders are built upon the
classical source-filter model of the human vocal mechanism,
which conceptualizes speech production as two distinct and
independent processes: the excitation source and the vocal
tract response. While traditional vocoders relying on digital
signal processing are fast, they often yield poor speech
quality due to oversimplified speech modeling. On the other
hand, vocoders fully based on neural networks produce
high-quality speech but lack real-time processing capability.
To strike a balance between synthesis speed and quality,
we employ LPCNet [34] as our vocoder. LPCNet uniquely
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Figure 7: The structure of MUSNet to perform exhaustive
extraction of speech information from ultrasound.

combines the nonlinear fitting prowess of neural networks
with the simplicity of Linear Predictive Coding (LPC) fil-
ters. By using LPC filters to simplify vocal tract modeling
and neural networks to fit the excitation sources, LPCNet
effectively reduces the complexity of acoustic modeling. The
generation process for the speech sample point Ri at time t
is as follows:

Rt =
M∑
k=1

βkst−k + et, (13)

where βk represents the k−th LPC parameter of the current
frame, which is calculated by the LPC filter, s(t−k) repre-
sents the sampling point at time t− k, and et represents the
residual at time t. LPCNet regards et as an excitation source
for neural network fitting. As shown in Figure 8, LPCNet
is divided into three modules, where the LPC filter module
computes β from speech parameters. Notably, we opt for
MFCC as LPCNet’s input to reconstruct the time-domain
waveform, rather than Bark-frequency cepstral coefficients
(BFCC), which have limited low-frequency range and can
lead to inaccurate estimations. The frame rate network,
consisting of two convolutional and fully connected layers,
provides a conditional vector input to the sample rate net-
work. The sample rate network, forming the core of LPCNet,
employs two GRU layers to autoregressively predict et.

7 VIRTUAL GESTURE GENERATION

In this section, we introduce how to generate virtual gesture
from wild audio, where cGAN is used as the cross-modal
generator.

7.1 Intuitive Insight

Establishing complex mapping relationships between
speech and ultrasound signals necessitates substantial
amounts of paired training data, leading to impractically
high data collection costs. Therefore, inspired by back-
translation from machine translation [35]–[38], we design
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Figure 8: The structure of LPCNet Vocoder, which synthe-
sizes speech from MFCC.

a novel virtual gesture generation scheme that generates
ultrasound signals from wild audio.

In machine translation tasks, back-translation hinges on
the concept that abundant pseudo-data pairs can be syn-
thesized by training a model to convert from the target to
the source language, particularly when the target corpus
is more accessible [39]. In a similar vein, leveraging the
ease of collecting audio data from everyday activities (e.g.,
phone calls or voice chats), we can develop a reverse model
to generate ultrasound signals from audio. This approach
allows for the creation of additional data pairs using solely
new audio. Our key insight is that fabricating virtual gesture
data from audio enhances the diversity of sentence sets
and acts as a denoising training method. This helps in
clarifying ambiguities in forward models, ultimately leading
to improved generalization performance.

It’s important to note that, in contrast to prior work in
sign language translation [40], which implemented “back
translation” by rearranging words in the original sentence,
our approach focuses on generating entirely new sentences.
We posit that this novel insight holds potential for broader
application in various sensing tasks, offering a substantial
reduction in data collection overhead.

7.2 Model Design
The transformative capability of cGAN (Conditional Gen-
erative Adversarial Network) [41] across domains has been
widely demonstrated in fields like image generation [41]–
[43], speech enhancement [44]–[46], and melody synthe-
sis [47]. We present our cGAN framework for audio-to-
ultrasound cross-domain translation in Figure 9. This frame-
work comprises two pivotal elements: a generator G and
a discriminator D. Consider (U,M) as a pair of an ul-
trasound vector and its corresponding audio vector. The
model, augmented with additional audio information M ,
trains the generator G to mimic the real distribution of the
target ultrasound data Ur , while the discriminator D aims
to differentiate the authentic data Ur from the generated
pseudo-data Ug produced by G. The objective function
V (G,D) is defined as follows:

min
G

max
D

V (D,G) = LD(G,D) + LG(G,D). (14)

Using the trained G, we can generate dozens of correspond-
ing ultrasound data for an unseen audio to enable virtual
gesture generation.

7.2.1 Similarity Assessment Discriminator
A key challenge for discriminators is how to design for effec-
tive identification of real and generated data. The traditional
approach is to project the prediction into 1 dimension, which
represents the “real or fake” probability of the input data,
and then calculate the loss accordingly. However, due to
the 1-dimensional output containing limited information, it
is hard to force the discriminator to learn the correlation
between the two modalities, audio and ultrasound, to rea-
sonably distinguish “real or fake”. Hence, inspired by the
work on speech enhancement involving multiple modalities
similarly [19], [20], we use the Siamese network [48] and
Triplet loss [49] to train the cross-domain discrimination
model and evaluate the similarity between the two modali-
ties.

Defining (Ur,M) and (Ug,M) as two types of input
pairs (real pair and fake pair) for D, where U is a vector
of ultrasound phase gradients, amplitude gradients, and
Doppler in series and M represents the MFCC parameters.
We first design two sub-networks: the ultrasound sub-
network and the audio sub-network, which extract embed-
ded similarity features for U and M respectively. These
two sub-networks have a similar network structure, with
a Resblock and a convolutional layer to abstract features,
a BLSTM layer to obtain temporal context information,
followed by an FC layer to project the final similarity feature
vector. Note that in order to fairly estimate the similarity
vectors of two different inputs of the same modality, the ul-
trasound sub-network deploys a Siamese network structure
that shares architecture and weights for the inputs Ur and
Ug .

To enable D to better ”understand” the correlation be-
tween ultrasound and audio, facilitating correct identifica-
tion, we use the Triplet loss function to update the model
parameters. Specifically, for D, the input to loss is a triple
(M,Ur, Ug), where M is considered as the anchor, Ur as
the positive sample, and Ug as the negative sample. Aiming
to minimize the distance of real pairs (M,Ur) and maximize
the distance of false pairs (M,Ug) in the feature space, the
loss function for D is designed as follows:

LD(G,D) = EM,Ur,Ug∼pdata(M,Ur,Ug)

[∥fa(M)− fu(U
r)∥22 − ∥fa(M)− fu(U

g)∥22 + α]+,
(15)

where fa and fu represent the audio and ultrasound sub-
networks respectively, and α is a margin distance that is
enforced between real and fake pairs. Based on the insight
that the closer the distance between two points in the same
feature space, the more similar they are implied to be (i.e.,
the higher the correlation), D is trained to learn how to
capture the correlation between audio and ultrasound to
distinguish between real and fake ultrasound.

7.2.2 Audio-to-Ultrasound Generator
For the generator G, our goal is to learn the mapping from
the auxiliary audio to the underlying ultrasound variation
patterns. The input of G is the MFCC speech features
M ∈ RTm×dm

calculated from the real audio and a random
noise vector N ∈ RTm×dm

. Note that we set the dimensions
of M and N to be the same. The feature extractor and
ultrasound predictor modules are developed in G based
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on our intuition that pairwise tasks can use a similar
model structure. In order to extract features, we likewise
apply a Resblock-based triple-stream structure on the input
sequence and then feed the concatenated output into a
6-layer 1D dilated convolution. In particular, contrary to
MUSNet (Section 6), we utilize transposed convolution [50]
in the Resblock structure rather than general convolution
to upsample audio parameters (MFCC) to reconstruct ul-
trasound parameters (amplitude, phase and Doppler) with
much smaller temporal resolution. Finally, we use a Bi-
directional LSTM layer [51], sandwiched between two linear
projections, to jointly predict the amplitude gradients, phase
gradients, and Doppler of the ultrasound.

G also uses the Triplet loss but adversarially swaps the
positions of the positive and negative samples, i.e. the input
is (M,Ug, Ur). Since the generator G is tasked to not only
fool the discriminator D, but also to get as close to the
ground truth as possible, we mix the triplet loss with a
traditional loss (L1 distance) to encourage alignment, which
has been considered beneficial in previous studies [52]. The
final loss function for G is shown in Equation 8:

LG(G,D) = EM,Ug,Ur∼pdata(M,Ug,Ur),N∼pN

[µ(∥fa(M)− fu(G(M,N))∥22 − ∥fa(M)− fu(U
r)∥22 + α)+

+ λ∥G(M,N)− Ur∥1],
(16)

where µ and λ represent the coefficients of the Triplet loss
term and the L1 loss term respectively, and G : (M,N) →
Ug .

8 USER ADAPTATION

This section details our strategy to enhance the user adapt-
ability of UltraSR. Given the variations in individual tim-
bre, a substantial amount of training data from new users
is typically required for model fine-tuning, rendering this
approach impractical for real-world deployment. Further-
more, aphasics are unable to provide audible speech for
labeling purposes. Our critical insight to overcome this
challenge recognizes that while audio is rich in individual
characteristics like timbre, ultrasound signals, reflected by
articulatory gestures, predominantly convey the semantic
information of speech, which remains relatively consistent
across different individuals. This understanding leads us
to fine-tune our model by collecting unlabeled ultrasound
signals from target users while leveraging labeled data from
an existing source training dataset. The workflow for this
adaptation process is depicted in Figure 10.

Denote the source dataset as Ds =
{(Us

1 , A
s
1), . . . , (U

s
n, A

s
n)}, where Us represents the

ultrasound signal and As represents the audio signal
aligned with the Us timing. We cannot use traditional
fine-tuning schemes for U t collected from target users due
to the lack of time-aligned audio label At. Thus, we focus
on Ds. From Ds, we select As that has the same speech
content with At as the label of U t, since the timbre of the
reconstructed audio by UltraSR relies on labels rather than
ultrasound signals. However, although the content of the
audio is the same, As and At are temporally aligned in time
series due to distortions caused by differences in individual
speaking rates. The neural network predicts Ât from U t,
and the loss existing between Ât and As can be expressed
as:

L = ∥As − Ât∥2
= ∥At − Ât∥2 + Ltime ,

(17)

where Ltime is the loss of timing mismatch between As

and At. The existence of Ltime makes the model unable to
establish the correct mapping relationship between U t and
At.

To tackle this issue, we employ Dynamic Time Warping
(DTW) [32] to develop a loss function that mitigates the
timing distortion effects between As and U t. Specifically, we
use a pre-trained model to initially predict a lower-quality
version of Ât from U t. We then apply DTW to temporally
align As to Ât, resulting in a time-aligned version Ās. With
Ās and Ât now synchronized in the time dimension, the
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Figure 11: Experimental setup. The target sits in a normal
posture and holds the smartphone naturally to record ul-
trasound signals during the target’s speech with/without
audio.

timing distortion loss, Ltime , is effectively nullified. This
leads to the formulation of a new loss function:

L = ∥Ās − Ât∥2. (18)

To address the issue of non-differentiability in DTW when
transforming As to Ās, it is essential to note that the loss
induced by DTW in this process does not contribute to
the model’s back-propagation. This limitation of DTW can
result in some loss of accuracy in obtaining Ās due to
timing discrepancies, which we denote as δA. To mitigate
this accuracy reduction in the application of DTW for As,
we introduce a more precise matching scheme rather than
randomly selecting As from Ds. Given that the magnitude
δA of depends on the extent of distortion between As and
At, and since At cannot be directly acquired, we use the
timing matching loss δU between Us and U t as a proxy for
δA. This indirect representation is valid due to the complete
temporal synchronization between ultrasound and audio
signals during recording.

To more accurately discern the differences between
Us and U t, we employ Canonical Correlation Analysis
(CCA) [53] to identify more correlated components in the
magnitude and phase of multiple subcarriers of Us and U t.
We then apply DTW to calculate the corresponding timing
matching loss δU . Finally, in the source dataset Ds , we select
the As that corresponds to the minimum δU as the label for
U t, thereby minimizing the δA loss.

9 IMPLEMENTATION

UltraSR Prototype: We implement a prototype of UltraSR
for comprehensive evaluation. Figure 11 shows the ex-
perimental setup. The target is asked to sit in a normal
posture, naturally holding the smartphone to record the
ultrasound signals during the target’s speech with/without
audio. Without loss of generality, we exploit a Samsung
Galaxy S8 to validate the performance of UltraSR on the
commercial smartphone platform. We configure and control
the smartphone using the LibAS [54] development toolkit
run on a PC (i.e., MacBook Pro laptop) to synchronously
collect both ultrasound and audio from the bottom micro-
phone. We utilize a server equipped with an NVIDIA GTX
2080 Ti to train and test our neural network models.
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Figure 12: The T-F spectrogram of ground truth and the
reconstructed speech. The speech contents are “wo3 kan4
dao4 yi4 ben3 shu1 he2 yi4 duo3 hua1.” (I saw a book and
a flower.).

Data Collection: In our experiments, we select 250 unique
sentences covering all Chinese phonemes from the open-
source dataset AISHELL-3 [55] as our speech corpus. We re-
cruit 10 volunteers, including 5 males and 5 females, ranging
in age from 19 to 25 years old, and all volunteers are native
speakers of mandarin. We explicitly inform volunteers about
the purpose of the experiments. To increase the diversity
of the environment, all volunteers repeat each sentence at
least 5 times in 3 quiet environments (i.e. laboratory, meeting
room, office). Therefore, we obtain a total of 37500 data pairs
with 4s length of each pair (takes about 41.7 hours). We
adopt corpus to randomly split the collected dataset into
the training and test sets that include 200 and 50 sentences,
respectively. The experiment was approved by the Internal
Review Board (IRB) of the Central South University for
human subjects.
Virtual Gesture Generation: To generate additional virtual
articulatory gestures, we train the cGAN-based model using
the training set. Furthermore, each volunteer provides an
additional 500 audios that are not included in our corpus.
cGAN is controlled to repeatedly generate gestures from
each audio 15 times, after which the generated dataset is
combined with the original training set to form a new
training set. Note that the sentences used in the generated
data do not appear in the training or test set. As a result,
the final training set has 105000 data pairs with 700 unique
sentences, whereas the final test set has 7500 data pairs
with 50 unique sentences. Finally, UltraSR is trained and
evaluated using the final training/test set.
Metrics: We characterize performance and conduct a com-
prehensive comparison with the state of arts from two
perspectives: speech recognition accuracy and speech recon-
struction quality. These can be quantified by the following
four metrics:
Character Error Rate (CER): The minimum difference in char-
acters between system output and baseline, which can be
calculated by [56]:

CER =
Ic + Sc +Dc

Nc
, (19)
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where Nc represents the total number of reference char-
acters. Ic, Sc, and Dc respectively represent the minimum
number of characters inserted, replaced, and deleted to
convert the output of Automatic Speech Recognition (ASR)
to a reference. Using the Microsoft Azure Speech-to-Text
API [57], we calculate CER by comparing the reconstructed
speech to the reference speech recorded with the same
microphone. A lower CER indicates a higher quality of the
reconstructed speech.
STOI [58]: Short-time objective intelligibility is a state-of-
the-art speech intelligibility estimator that uses a linear
correlation of temporal envelopes between reconstructed
speech and ground truth, with values ranging from 0 (poor)
to 1 (excellent).
ESTOI [59]: Extended short-time objective intelligibility
ranges from 0 (poor) to 1 (excellent).
PESQ [60]: Perceptual evaluation of speech quality is an
objective and fully referenced approach for assessing speech
naturalness that creates models with mean opinion scores
ranging from 1 (poor) to 5 (excellent).

10 EVALUATION

In this section, we conduct comprehensive experiments in
the real world to evaluate the effectiveness and robustness
of UltraSR.

10.1 Overall Performance

This section focuses on verifying the effectiveness of the
proposed series of techniques: i) speech reconstruction, ii)
virtual gesture generation, and iii) adaptability to different
users.

10.1.1 Speech reconstruction ability
To give an intuitive awareness of the speech reconstruction
performance of UltraSR, we show the T-F spectrograms of
the speech synthesized by UltraSR and the ground truth
in Figure 12. The similarity in the overall shape of the T-
F spectrum indicates that the information for reconstruct-
ing the human voice is well preserved in the articulatory
gestures. The reason is that UltraSR capture multi-channel
contextual information using the transformer to reconstruct
the high-dimensional spectrum. We annotate the position
of the word at the corresponding formant and show the
details of the low-frequency part. Formants are unique
frequency components of the human voice. The results show
that UltraSR can reconstruct the low-frequency part and
distinguishable formant, which indicates that our vocoder
can recover natural human voice from speech parameters.
In addition, we find that UltraSR can even capture the
airflow that usually appears in some plosives, which further
confirms the feasibility of the proposed UltraSR in feature
extraction.

To further evaluate the ability of UltraSR to preserve
user-relevant speech characteristics (i.e., intonation, speech
rate), one user is asked to repeat the same sentence in
various intonations. Intonation is known to represent the
configuration of the energy and the pattern of pitch vari-
ation at the sentence level [61]. As shown in Figure 13,
The similarity of the energy configuration and the pattern
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Figure 13: Spectrograms of speech with special intonation
on various parts of the content. The speech contents in (a)
and (b) are “mei2 ren2 shi4 lao3 ban3.”(No one is the boss.),
“yi2 qie4 dou1 hen3 hao3.”(Everything is fine.), respectively.

Table 1: Objective speech quality, intelligibility, and CER for
baseline method and UltraSR.

Method STOI ESTOI PESQ CER

Lip2Wav(Vision-based) 0.73 0.54 1.77 14.08%
SoundLip [11] / / / 12.56%

SVoice 0.77 0.72 1.53 5.72%
UltraSR (ours) 0.79 0.73 1.69 3.89%
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Figure 14: The CER on sentences of different lengths at
different speech rates.

of pitch variations between the reconstructed speech and
the ground truth indicates UltraSR ’s ability to preserve
intonation information. Similarly, the temporal alignment of
the reconstructed speech and the ground truth in multiple
repetitions demonstrates the preservation of speech rate
information.

We also compare UltraSR with three state-of-the-
art techniques, vision-based Lip2Wav [62], acoustic-based
SoundLip [11], and SVoice [14]. We reproduce the exper-
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Figure 15: Performance of UltraSR’s virtual gesture genera-
tion scheme.
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Figure 16: The CER and MOS of each subject during vocal-
ization/silence.

imental results of Soundlip using our dataset. Note that
since we cannot obtain the corresponding vision dataset,
we directly use the results claimed in the paper. From the
comparisons shown in Table 1, we can see that our system
UltraSR achieves better intelligibility and CER for speech
reconstruction than Lip2Wav. In contrast, the speech quality
of UltraSR is slightly lower than that of Lip2Wav. The reason
is that we leverage MFCC as an intermediate feature for
speech reconstruction instead of using the directly predicted
spectrum. Compared to spectrum, MFCC leaves out spec-
trum details, thus degrading the speech quality. Never-
theless, MFCC can prompt the model to focus on speech
content, which benefits the accuracy and intelligibility of
reconstructed speech. Also, in most cases, even if the speech
quality is poor, it does not hinder people from getting the
critical information. This is evidenced by UltraSR achieving
a STOI value of 0.79, which indicates excellent intelligibility
since listeners are likely to understand the speech without
much effort when the value is above 0.75. Notably, although
we use a lightweight neural vocoder to trade off latency
and quality, it is possible to reconstruct high-quality speech
from MFCC with heavy neural vocoders [63]. In addition,
UltraSR outperforms SoundLip on CER since the latter
focuses more on the task of voice command classification
rather than building complex mappings. More importantly,
we find that the average CER of the UltraSR decreases from
5.72% to 3.89% compared with SVoice due to the multi-scale
feature extraction mechanism that makes the representation
of articulatory gestures more efficient. In other words, the
speed of vocalization is also an indispensable feature in
speech production, offering a speed perspective that pro-
vides additional information gain for capturing articulatory
characteristics.

(a) The generated gradients of amplitude and phase.
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Figure 17: The virtual gesture generated by cGAN where
speech content is “fan3 zheng4 wo3 ting3 han2 xin1 de5”
(Anyway, I am quite chilled).

Speaker-dependant characteristics (e.g., speech rate) and
speech content (e.g., sentence length) may also affect the
performance of UltraSR. As shown in Figure 14, we roughly
divide the speech speed into three levels: fast, medium, and
slow, corresponding to faster than 260, between 160 and
260, and below 160 characters per minute. We evaluate the
effect of different numbers of characters of speech content
at each speech rate, where the speech content is randomly
selected from our corpus. The experimental results show
that the CER of UltraSR decreases as the number of content
characters increases, which is expected since MUSNet relies
on contextual information. UltraSR maintains a CER of less
than 10% at slow or moderate speech speeds when the
number of characters in a sentence is more than 4, sufficient
for everyday conversation in Mandarin. Sentences with less
than four characters are usually common phrases, which
can be considered separately for building multitasking net-
works [11]. Although maintaining a fast speech rate (above
260/min) causes more phoneme overlap between charac-
ters, resulting in a decrease in CER, MUSNet can use con-
textual information to recover the correct information when
the number of characters is more than 5. The above results
show that UltraSR can maintain high robustness at various
speech rates, especially in medium and long sentences.

Note that the above experiments are conducted in the
case of target vocalization for the systematic evaluation.
However, our goal is to reconstruct the speech of silent peo-
ple, so we also analyze the effect of vocalization/silence on
the ultrasound signal for speech construction. As the silent
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Table 2: Objective speech quality, intelligibility and CER for
Ablation Study.

Method STOI ESTOI PESQ CER

Single Frequency 0.62 0.48 1.34 43.21%
W/o Gradient 0.74 0.66 1.27 13.97%

W/o Transformer 0.72 0.64 1.51 12.96%
W/o RPE 0.71 0.63 1.45 9.45%

W/o Triple-stream 0.74 0.66 1.27 8.82%
W/o Vocoder 0.61 0.43 1.15 7.31%
Doppler only 0.77 0.67 1.41 6.41%

UltraSR 0.79 0.73 1.69 3.89%
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Figure 18: Performance of UltraSR’s user adaptability.

test set, we re-collected ultrasound information for each
target in silence. Due to the lack of time-aligned reference
speech to objectively compare the quality of reconstructed
speech in silence, we adopt a widely used subjective eval-
uation technique, i.e., Mean Opinion Score (MOS) [64], to
compare the quality of speech. We recruit 20 listeners in
the age range of 19 to 50. The listeners are required to
evaluate the reconstructed speech quality of the test set
collected during vocalization/silence, then score the speech
quality on a scale of 1 (poor) to 5 (excellent), where 1 (poor)
means that the audio is unintelligible and unclear, and
5 (excellent) requires natural and smooth content. Besides,
the audio examples on a scale of 1 to 5 are provided to
listeners as a reference for scoring. We ensure the listener
does not know the sentence’s content in advance. As shown
in Figure 16, the speech reconstruction quality of using the
silence test set is slightly lower than that of vocalization. All
subjects’ average CER and MOS scores during vocalization
and silence are 3.89%, 4.25 and 5.22%, 4.17, respectively.
This is expected due to the auditory feedback effect [3],
where humans unconsciously suppress the movement of
vocal organs (e.g., the tongue) during silent speech. Al-
though the performance of UltraSR degrades in silence, its
average CER is still lower than that of the start-of-the-art
methods. Additionally, by collecting additional silent data,
the voiced/silent data discrepancies can be eliminated using
the techniques described in section 8.

10.1.2 Effect of virtual gesture generation
This experiment is designed to investigate the effective-
ness of the virtual gesture generation scheme. As shown
in Figure 17, the directly generated ultrasound signal is
doped with a certain amount of noise compared to the
ground truth. We apply a Savitzky-Golay filter [65] for high-
quality speech synthesis to smooth the generated signal. The
smoothed ultrasound signals act as new training data along

with the original dataset to train the DNN model. To verify
the superiority of the virtual samples generated by cGAN
in enriching the corpus’ diversity, we compare the per-
formance of our method and the original back-translation
on the various wild audios. Figure 15 displays the impact
of the number of wild audios on the CER of UltraSR.
Introducing virtual samples generated by cGAN benefits
speech reconstruction of both seen and unseen sentences.
As the audio signals of unseen sentences increase, the CER
of UltraSR decreases continuously. Especially for unseen
sentences, the new data generated by cGAN dramatically
reduces the CER of UltraSR from 40.19% to 7.55% when
the audio is up to 500. Our method outperforms back-
translation with the same number of audio since cGAN
can create more virtual samples from the distribution of
the training set. With numerous virtual samples, however,
both techniques experience a performance reduction. As the
number of virtual samples rises, excessive noise is injected
into the model, which is detrimental to training the model.
Although the number of virtual samples created by back-
translation is substantially lower than that of our technique,
the poor sample quality prevents it from using more audio.

10.1.3 Adaptability to different users
We investigate UltraSR’s adaptability to different users
when they only provide ultrasound signals. Considering the
variation in timbre between males and females, we only
fine-tune the model using data from users of the same
gender. In our experiments, one male/female user serves
as the source user, while four male/female users serve as
the target user. Figure 18 depicts the experimental results.
UltraSR demonstrates its effectiveness in user adaptation
using only ultrasound data. We observe that using ultra-
sound matching results in a lower CER since ultrasound
matching reduces the penalty associated with using tempo-
ral calibration. In addition, we compare our method to the
original scheme of fine-tuning using ultrasound data with
audio (i.e., changing the timbre). Compared to the original
scheme, UltraSR converges faster, requiring only one hour
of data collection to reduce the CER to 6.31%. However,
as the amount of data used for fine-tuning increased, the
original scheme eventually outperforms UltraSR, as timing
calibration errors are always present. Since our fine-tuning
scheme aims to leverage unlabeled data for user adaptation,
we use only naive fine-tuning methods, resulting in the
need for one hour of data from the new user. Advanced
transfer learning [66] methods can reduce the dependence
on data, which is one of our future directions. In addition,
some recent works combine new sensing frameworks with
large language models (LLM) to bring opportunities for
open-world SSI. Specifically, LLM can create diverse user
datasets [67] or serve as evaluation indicators to transfer
knowledge to the SSI model [68]. We firmly believe that
integrating UltraSR as part of LLM applications will bring
new perspectives in the future.

10.2 Ablation Study
In this section, we conduct ablation experiments to investi-
gate performance in speech reconstruction quantitatively. To
simultaneously compare the accuracy and quality of speech
reconstruction, we use the test dataset when subjects remain
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ent noise.

Figure 23: CER on typical body
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Figure 24: CER on various scenar-
ios.

vocalized. We validate our approach by ablating specific
components; the results are shown in Table 2.
Single Frequency means only a single frequency CW signal
is emitted when sensing articulatory gestures. The results
show that using multiple frequency subcarriers can effec-
tively suppress multipath effects and frequency selective
fading, thus improving the system’s stability.
W/O Gradient represents that coherent demodulation’s ini-
tial phase and amplitude are directly used without differ-
ential processing in the signal processing stage. The results
show that differential processing can eliminate the influence
of static interference and improve system performance.
W/o Transformer means that a typical bidirectional LSTM
module replaces the transformer structure. The results show
that the Transformer can better capture the context informa-
tion in the time series and improve the sensing accuracy.
W/O RPE uses the original absolute position encoding
instead of the relative position encoding. The results show
that the overall performance is slightly reduced, and the
absolute position-coding can better represent the positional
relationship of the speech temporal sequence.
W/o Triple-stream means that we remove the triple-stream
structure and stitch the differential phase, amplitude, and
Doppler directly along the channel dimension as the input
of the feature embedding module. The results indicate that
the triple-stream structure positively affects extracting and
fusing the phase, amplitude, and Doppler variations.
W/o Vocoder represents that the LPCNet Vocoder is re-
placed by the classic digital speech synthesis method Griffin
Lim. It can be seen that compared with the digital speech
synthesis method, LPCNet Vocoder greatly improves speech
quality while having a slight impact on content accuracy.
Doppler represents the use of Doppler shift instead of dif-
ferential phase and amplitude. The results show that using
Doppler cannot achieve the best performance because the
information loss from a single perspective.

10.3 Robustness Analysis
In this section, we analyze the robustness of UltraSR under
different user-smartphone topologies, holding style, ambi-
ent noises, body motions, and real application scenarios. In
all experiments, subjects are asked to hold the smartphone
and remain silent.

10.3.1 Distance and Orientation
We evaluate the performance of UltraSR at different dis-
tances and orientations of the user’s mouth relative to the
bottom microphone of the smartphone. In this experiment,
the smartphone is used at different distances (from 1cm
to 10cm) and different orientations (from -60◦ to 60◦). The
experimental results are shown in Figure 19. We can see
that UltraSR can achieve the CER within 10% stably from
2 8cm and −15 15 degrees, which is consistent with the
habit of human voice input. As the distance between the
smartphone and the user’s mouth increases, the CER of Ul-
traSR decreases continuously due to the decay of ultrasound
signals in the air and the weak signal fluctuations caused
by articulatory gestures. Nevertheless, UltraSR can keep the
CER below 20% in the range of less than 8cm. Notably, a
distance of less than 2cm also degrades the performance,
as the ultrasound signal cannot fully capture articulatory
gestures at such a close distance.

Furthermore, we also verified that UltraSR is robust to
pitch angles. In this scenario, we keep the bottom of the
phone 5cm away from the mouth and change the pitch angle
between it and the mouth in the range of −30 to 30 degrees.
The experimental results are shown in the figure 20, which
is consistent with our expectation that as the angle range
increases, the system performance degrades. Our system
can maintain stable performance within −15 to 15 degrees,
with a CER of less than 10%.

Considering the fact that users are used to sending voice
to a smartphone within the range of 2cm to 8cm within
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an angular offset of 15 degrees in most cases, especially
in public places, we believe that UltraSR can be easily
integrated into the voice applications of the smartphone and
can maintain stable performance without changing users’
habits.

10.3.2 Holding Style
Users may have more than one gesture of holding the
phone. A typical situation is the holding style of making
a phone call, as shown in Figure 21. We evaluate the
UltraSR’s performance in this scenario by additionally col-
lecting paired data from one user while simulating a phone
call. The results show that our system can effectively capture
vocal gestures and reconstruct speech in this scenario, with a
CER of 5.83%. This motivates us to implement some exciting
applications, such as silent phone calls, which is very useful
for confidentiality scenarios.

10.3.3 Ambient Noise
To assess the performance of UltraSR under varying ambi-
ent noise conditions, we employed an additional speaker
positioned 40 cm away from the subject, serving as a noise
source. Our experiments incorporated four distinct types
of noise: music, speech, traffic, and machine noise, each
maintained at a noise level of approximately 65 dB. The
outcomes of these experiments are illustrated in Figure 22.
Notably, UltraSR demonstrates remarkable robustness to
these diverse noise types despite our training data being
acquired in a controlled, quiet setting. This resilience is
largely attributed to the frequency band of everyday noise
signals typically falling below 10kHz, a range that UltraSR’s
coherent detector effectively filters out during the signal
processing phase.

10.3.4 Body Motion
To understand how UltraSR performs amidst common body
movements that users might engage in while using a smart-
phone, we evaluate its robustness against several typical
motions anticipated to produce significant signal interfer-
ence. Four participants are asked to perform movements
such as Stand Up, Hand Tremble, Hand Interference, Turn
Around, and Walk while using UltraSR in silence. Here,
Hand Interference’ refers to disruptions caused by the other
hand, while Hand Tremble’ describes involuntary shakes
or movements of the hand holding the device. We assess
each subject’s Character Error Rate (CER) under these var-
ied motions. As Figure 23 indicates, UltraSR maintains an
average CER below 10% for all tested motions except Walk’,
demonstrating its effectiveness amidst daily life activities.
This resilience can be attributed to the diversity in body
postures and handheld device orientations captured during
data collection. The relatively higher CER observed during
‘Walk’ is likely due to more complex dynamic disturbances
caused by extensive body movements. We recognize that
addressing these disturbances may be possible by incorpo-
rating a broader dataset of body motions, which we aim to
explore in our future work.

10.3.5 Environmental Disturbance
To thoroughly assess UltraSR beyond the confines of a con-
trolled laboratory setting, we also examine its performance

in real-world environments teeming with unpredictable fac-
tors. We select six typical scenarios for this purpose: a quiet
office as a baseline, a busy library, a roadside with heavy
traffic, a noisy restaurant, a running subway, and walking
through a crowded subway station. The experimental out-
comes, as shown in Figure 24, reveal that the average CER
in these scenarios is respectively 7.22%, 7.21%, 7.75%, 7.90%,
10.81%, and 14.11%. These results demonstrate that UltraSR
maintains robust performance in most open environments,
achieving a CER of less than 9% in most scenarios. It is
noteworthy, however, that UltraSR’s performance slightly
declines in exceptionally crowded settings, likely due to
external interference from surrounding individuals, and
more notably when combined with user movement, such
as walking. Addressing these challenges could involve the
use of neural networks or advanced modeling techniques
to filter out irrelevant user and device motions [69], [70],
which, while crucial for wireless sensing tasks, falls outside
the primary scope of this paper. Overall, the experimental
results validate UltraSR’s ability to accurately reconstruct
audible speech from a user’s silent speech across various
real-life situations, underscoring its potential for facilitating
silent speech in public spaces.

10.4 System Efficiency.

We evaluate the UltraSR’s efficiency from two perspectives:
computational time and energy consumption. Regarding
computational time efficiency, the UltraSR is structured in a
client/server format: the Samsung Galaxy S8 smartphone
is responsible for the acquisition and uploading of
ultrasound signals, while signal processing and model
inference take place on the server. In this setup, the
server provides remote voice conversion services to the
user’s smartphone. Once the server receives the uploaded
data from the user, it requires an average time delay of
214ms to process the signal. This includes operations such
as event detection (46ms), filtering (21ms), and Fourier
transform (147ms). After the signal processing is complete,
the neural network inference consumes an additional
287ms of time overhead. However, numerous studies have
indicated that leveraging a mobile GPU/NPU can markedly
decrease latency [19], [20]. We aim to develop a lighter
network that supports full inference on mobile devices.
Considering the mobile device’s role is mainly to transmit
and collect ultrasonic signals, its energy consumption is
relatively low (16.84 mAh), especially when compared to
the typical battery capacity of a smartphone (3000 mAh)
[19]. Therefore, UltraSR’s current energy usage on mobile
devices is sufficiently low for everyday use, making it a
viable solution for daily applications.

11 DISCUSSION
Device Portability. Smartphones often exhibit variability
in the configuration of speakers and microphones. For in-
stance, the Samsung S8 has its bottom microphone and
speaker on the same side, whereas the VIVO X20 features
them on opposite sides. Additionally, the frequency re-
sponse of microphones and speakers can differ significantly
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among various smartphone models [71]. Consequently, de-
ploying a DNN model trained on data from the Samsung S8
onto other devices might result in a decline in UltraSR’s per-
formance. One strategy could be to compile larger datasets
encompassing a wide range of phone types to facilitate
broader implementation across diverse smartphone models.
Alternatively, fine-tuning the model with a small data set
from new devices is another effective method, as demon-
strated in previous research [11]. This approach allows for
model adaptation to the specific acoustic characteristics of
different smartphone models, enhancing the versatility and
effectiveness of UltraSR in various hardware contexts.
Timbre and Language Adaptability. While UltraSR offers
a tailored solution to enhance user adaptability in SSI across
different individuals, new users still need to provide some
data for model fine-tuning. This requirement may not align
with the broader expectations for general SSI usability. One
viable approach to address this is through crowdsourcing,
aiming to gather training datasets encompassing diverse
users. Subsequently, a universal model could be developed
using our proposed timing warping loss function. Another
aspect to consider is the potential privacy concerns associ-
ated with vocal timbre, which could be used for identity
authentication. A possible solution here is the integration
of a speaker embedding module [72]. This module would
focus on extracting speaker-independent features, thereby
enabling the training of a generic model capable of alter-
ing vocal timbre. Furthermore, there is an opportunity to
explore inter-language generality with UltraSR. Although
it has been primarily trained and assessed on Mandarin
data, the underlying relationships between speech and ar-
ticulatory gestures are similar across different languages.
Therefore, we believe that UltraSR could potentially extend
its applicability to multiple languages if we can ensure
the availability of datasets that span a broader linguistic
spectrum.
Limited Sensing Range. The sensing range of UltraSR is
limited due to the fast attenuation of the acoustic signal in
the air. To address this challenge, one possible solution is
leveraging multiple microphones(i.e., both top and bottom
microphones) to enhance the signal-to-noise ratio (SNR) on
mobile devices.

12 CONCLUSION
This paper presents UltraSR, a silent speech interface that
can reconstruct audible speech from silent articulatory ges-
tures using an ultrasonic signal generated by a portable
smartphone. It contributes four tailored techniques: a multi-
scale feature extraction scheme that aggregates information
from multiple perspectives, an end-to-end model that es-
tablishes the independent mapping relationship between
audible speech and signals disturbance information caused
by articulatory gestures, a cross-modal data augmentation
mechanism that can generate virtual articulatory gestures
from widely available audio, a user adaptation technique
that utilizes a small amount of unlabeled ultrasound data
to fine-tune the model for different users. The extensive
experiments demonstrate that UltraSR has great potential
to support silent speech in public and restore voice for
aphasics.
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